Metamath Proof Explorer


Theorem gsumsubmcl

Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumsubmcl.z 0 ˙ = 0 G
gsumsubmcl.g φ G CMnd
gsumsubmcl.a φ A V
gsumsubmcl.s φ S SubMnd G
gsumsubmcl.f φ F : A S
gsumsubmcl.w φ finSupp 0 ˙ F
Assertion gsumsubmcl φ G F S

Proof

Step Hyp Ref Expression
1 gsumsubmcl.z 0 ˙ = 0 G
2 gsumsubmcl.g φ G CMnd
3 gsumsubmcl.a φ A V
4 gsumsubmcl.s φ S SubMnd G
5 gsumsubmcl.f φ F : A S
6 gsumsubmcl.w φ finSupp 0 ˙ F
7 eqid Cntz G = Cntz G
8 cmnmnd G CMnd G Mnd
9 2 8 syl φ G Mnd
10 eqid Base G = Base G
11 10 submss S SubMnd G S Base G
12 4 11 syl φ S Base G
13 5 12 fssd φ F : A Base G
14 10 7 2 13 cntzcmnf φ ran F Cntz G ran F
15 1 7 9 3 4 5 14 6 gsumzsubmcl φ G F S