Metamath Proof Explorer
Description: Append an element to a finite group sum. (Contributed by Mario
Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumunsn.b |
|
|
|
gsumunsn.p |
|
|
|
gsumunsn.g |
|
|
|
gsumunsn.a |
|
|
|
gsumunsn.f |
|
|
|
gsumunsn.m |
|
|
|
gsumunsn.d |
|
|
|
gsumunsn.y |
|
|
|
gsumunsn.s |
|
|
Assertion |
gsumunsn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsumunsn.b |
|
2 |
|
gsumunsn.p |
|
3 |
|
gsumunsn.g |
|
4 |
|
gsumunsn.a |
|
5 |
|
gsumunsn.f |
|
6 |
|
gsumunsn.m |
|
7 |
|
gsumunsn.d |
|
8 |
|
gsumunsn.y |
|
9 |
|
gsumunsn.s |
|
10 |
9
|
adantl |
|
11 |
1 2 3 4 5 6 7 8 10
|
gsumunsnd |
|