Metamath Proof Explorer
		
		
		
		Description:  Append an element to a finite group sum.  (Contributed by Mario
       Carneiro, 19-Dec-2014)  (Proof shortened by AV, 8-Mar-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gsumunsn.b |  | 
					
						|  |  | gsumunsn.p |  | 
					
						|  |  | gsumunsn.g |  | 
					
						|  |  | gsumunsn.a |  | 
					
						|  |  | gsumunsn.f |  | 
					
						|  |  | gsumunsn.m |  | 
					
						|  |  | gsumunsn.d |  | 
					
						|  |  | gsumunsn.y |  | 
					
						|  |  | gsumunsn.s |  | 
				
					|  | Assertion | gsumunsn |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumunsn.b |  | 
						
							| 2 |  | gsumunsn.p |  | 
						
							| 3 |  | gsumunsn.g |  | 
						
							| 4 |  | gsumunsn.a |  | 
						
							| 5 |  | gsumunsn.f |  | 
						
							| 6 |  | gsumunsn.m |  | 
						
							| 7 |  | gsumunsn.d |  | 
						
							| 8 |  | gsumunsn.y |  | 
						
							| 9 |  | gsumunsn.s |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 1 2 3 4 5 6 7 8 10 | gsumunsnd |  |