Metamath Proof Explorer


Theorem gsumunsn

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)

Ref Expression
Hypotheses gsumunsn.b B = Base G
gsumunsn.p + ˙ = + G
gsumunsn.g φ G CMnd
gsumunsn.a φ A Fin
gsumunsn.f φ k A X B
gsumunsn.m φ M V
gsumunsn.d φ ¬ M A
gsumunsn.y φ Y B
gsumunsn.s k = M X = Y
Assertion gsumunsn φ G k A M X = G k A X + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumunsn.b B = Base G
2 gsumunsn.p + ˙ = + G
3 gsumunsn.g φ G CMnd
4 gsumunsn.a φ A Fin
5 gsumunsn.f φ k A X B
6 gsumunsn.m φ M V
7 gsumunsn.d φ ¬ M A
8 gsumunsn.y φ Y B
9 gsumunsn.s k = M X = Y
10 9 adantl φ k = M X = Y
11 1 2 3 4 5 6 7 8 10 gsumunsnd φ G k A M X = G k A X + ˙ Y