Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumunsnd
Metamath Proof Explorer
Description: Append an element to a finite group sum. (Contributed by Mario
Carneiro , 19-Dec-2014) (Revised by AV , 2-Jan-2019) (Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumunsnd.b
⊢ B = Base G
gsumunsnd.p
⊢ + ˙ = + G
gsumunsnd.g
⊢ φ → G ∈ CMnd
gsumunsnd.a
⊢ φ → A ∈ Fin
gsumunsnd.f
⊢ φ ∧ k ∈ A → X ∈ B
gsumunsnd.m
⊢ φ → M ∈ V
gsumunsnd.d
⊢ φ → ¬ M ∈ A
gsumunsnd.y
⊢ φ → Y ∈ B
gsumunsnd.s
⊢ φ ∧ k = M → X = Y
Assertion
gsumunsnd
⊢ φ → ∑ G k ∈ A ∪ M X = ∑ G k ∈ A X + ˙ Y
Proof
Step
Hyp
Ref
Expression
1
gsumunsnd.b
⊢ B = Base G
2
gsumunsnd.p
⊢ + ˙ = + G
3
gsumunsnd.g
⊢ φ → G ∈ CMnd
4
gsumunsnd.a
⊢ φ → A ∈ Fin
5
gsumunsnd.f
⊢ φ ∧ k ∈ A → X ∈ B
6
gsumunsnd.m
⊢ φ → M ∈ V
7
gsumunsnd.d
⊢ φ → ¬ M ∈ A
8
gsumunsnd.y
⊢ φ → Y ∈ B
9
gsumunsnd.s
⊢ φ ∧ k = M → X = Y
10
nfcv
⊢ Ⅎ _ k Y
11
1 2 3 4 5 6 7 8 9 10
gsumunsnfd
⊢ φ → ∑ G k ∈ A ∪ M X = ∑ G k ∈ A X + ˙ Y