Metamath Proof Explorer


Theorem gsumunsnd

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 2-Jan-2019) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b B = Base G
gsumunsnd.p + ˙ = + G
gsumunsnd.g φ G CMnd
gsumunsnd.a φ A Fin
gsumunsnd.f φ k A X B
gsumunsnd.m φ M V
gsumunsnd.d φ ¬ M A
gsumunsnd.y φ Y B
gsumunsnd.s φ k = M X = Y
Assertion gsumunsnd φ G k A M X = G k A X + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumunsnd.b B = Base G
2 gsumunsnd.p + ˙ = + G
3 gsumunsnd.g φ G CMnd
4 gsumunsnd.a φ A Fin
5 gsumunsnd.f φ k A X B
6 gsumunsnd.m φ M V
7 gsumunsnd.d φ ¬ M A
8 gsumunsnd.y φ Y B
9 gsumunsnd.s φ k = M X = Y
10 nfcv _ k Y
11 1 2 3 4 5 6 7 8 9 10 gsumunsnfd φ G k A M X = G k A X + ˙ Y