Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsumunsnf  
				
		 
		
			
		 
		Description:   Append an element to a finite group sum, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by Mario
       Carneiro , 19-Dec-2014)   (Revised by Thierry Arnoux , 28-Mar-2018) 
       (Proof shortened by AV , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumunsnf.0   ⊢    Ⅎ   _  k  Y       
					 
					
						gsumunsnf.b   ⊢   B  =  Base  G      
					 
					
						gsumunsnf.p   ⊢   +  ˙ =  +  G      
					 
					
						gsumunsnf.g    ⊢   φ   →   G  ∈  CMnd         
					 
					
						gsumunsnf.a    ⊢   φ   →   A  ∈  Fin         
					 
					
						gsumunsnf.f    ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
					 
					
						gsumunsnf.m    ⊢   φ   →   M  ∈  V         
					 
					
						gsumunsnf.d    ⊢   φ   →   ¬   M  ∈  A           
					 
					
						gsumunsnf.y    ⊢   φ   →   Y  ∈  B         
					 
					
						gsumunsnf.s    ⊢   k  =  M    →   X  =  Y         
					 
				
					Assertion 
					gsumunsnf    ⊢   φ   →   ∑  G  k  ∈   A  ∪   M       X =  ∑  G  k  ∈  A   X +  ˙ Y        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumunsnf.0  ⊢    Ⅎ   _  k  Y       
						
							2 
								
							 
							gsumunsnf.b  ⊢   B  =  Base  G      
						
							3 
								
							 
							gsumunsnf.p  ⊢   +  ˙ =  +  G      
						
							4 
								
							 
							gsumunsnf.g   ⊢   φ   →   G  ∈  CMnd         
						
							5 
								
							 
							gsumunsnf.a   ⊢   φ   →   A  ∈  Fin         
						
							6 
								
							 
							gsumunsnf.f   ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
						
							7 
								
							 
							gsumunsnf.m   ⊢   φ   →   M  ∈  V         
						
							8 
								
							 
							gsumunsnf.d   ⊢   φ   →   ¬   M  ∈  A           
						
							9 
								
							 
							gsumunsnf.y   ⊢   φ   →   Y  ∈  B         
						
							10 
								
							 
							gsumunsnf.s   ⊢   k  =  M    →   X  =  Y         
						
							11 
								10 
							 
							adantl   ⊢    φ   ∧   k  =  M     →   X  =  Y         
						
							12 
								2  3  4  5  6  7  8  9  11  1 
							 
							gsumunsnfd   ⊢   φ   →   ∑  G  k  ∈   A  ∪   M       X =  ∑  G  k  ∈  A   X +  ˙ Y