Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumunsnf
Metamath Proof Explorer
Description: Append an element to a finite group sum, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by Mario
Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018)
(Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumunsnf.0
⊢ Ⅎ _ k Y
gsumunsnf.b
⊢ B = Base G
gsumunsnf.p
⊢ + ˙ = + G
gsumunsnf.g
⊢ φ → G ∈ CMnd
gsumunsnf.a
⊢ φ → A ∈ Fin
gsumunsnf.f
⊢ φ ∧ k ∈ A → X ∈ B
gsumunsnf.m
⊢ φ → M ∈ V
gsumunsnf.d
⊢ φ → ¬ M ∈ A
gsumunsnf.y
⊢ φ → Y ∈ B
gsumunsnf.s
⊢ k = M → X = Y
Assertion
gsumunsnf
⊢ φ → ∑ G k ∈ A ∪ M X = ∑ G k ∈ A X + ˙ Y
Proof
Step
Hyp
Ref
Expression
1
gsumunsnf.0
⊢ Ⅎ _ k Y
2
gsumunsnf.b
⊢ B = Base G
3
gsumunsnf.p
⊢ + ˙ = + G
4
gsumunsnf.g
⊢ φ → G ∈ CMnd
5
gsumunsnf.a
⊢ φ → A ∈ Fin
6
gsumunsnf.f
⊢ φ ∧ k ∈ A → X ∈ B
7
gsumunsnf.m
⊢ φ → M ∈ V
8
gsumunsnf.d
⊢ φ → ¬ M ∈ A
9
gsumunsnf.y
⊢ φ → Y ∈ B
10
gsumunsnf.s
⊢ k = M → X = Y
11
10
adantl
⊢ φ ∧ k = M → X = Y
12
2 3 4 5 6 7 8 9 11 1
gsumunsnfd
⊢ φ → ∑ G k ∈ A ∪ M X = ∑ G k ∈ A X + ˙ Y