Metamath Proof Explorer


Theorem gsumunsnf

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnf.0 _ k Y
gsumunsnf.b B = Base G
gsumunsnf.p + ˙ = + G
gsumunsnf.g φ G CMnd
gsumunsnf.a φ A Fin
gsumunsnf.f φ k A X B
gsumunsnf.m φ M V
gsumunsnf.d φ ¬ M A
gsumunsnf.y φ Y B
gsumunsnf.s k = M X = Y
Assertion gsumunsnf φ G k A M X = G k A X + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumunsnf.0 _ k Y
2 gsumunsnf.b B = Base G
3 gsumunsnf.p + ˙ = + G
4 gsumunsnf.g φ G CMnd
5 gsumunsnf.a φ A Fin
6 gsumunsnf.f φ k A X B
7 gsumunsnf.m φ M V
8 gsumunsnf.d φ ¬ M A
9 gsumunsnf.y φ Y B
10 gsumunsnf.s k = M X = Y
11 10 adantl φ k = M X = Y
12 2 3 4 5 6 7 8 9 11 1 gsumunsnfd φ G k A M X = G k A X + ˙ Y