Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval2.b |
|
2 |
|
gsumval2.p |
|
3 |
|
gsumval2.g |
|
4 |
|
gsumval2.n |
|
5 |
|
gsumval2.f |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
3
|
adantr |
|
9 |
|
ovexd |
|
10 |
5
|
ffnd |
|
11 |
10
|
adantr |
|
12 |
|
simpr |
|
13 |
|
df-f |
|
14 |
11 12 13
|
sylanbrc |
|
15 |
1 6 2 7 8 9 14
|
gsumval1 |
|
16 |
|
simpl |
|
17 |
16
|
ralimi |
|
18 |
17
|
a1i |
|
19 |
18
|
ss2rabi |
|
20 |
|
fvex |
|
21 |
20
|
snid |
|
22 |
5
|
fdmd |
|
23 |
|
eluzfz1 |
|
24 |
|
ne0i |
|
25 |
4 23 24
|
3syl |
|
26 |
22 25
|
eqnetrd |
|
27 |
|
dm0rn0 |
|
28 |
27
|
necon3bii |
|
29 |
26 28
|
sylib |
|
30 |
29
|
adantr |
|
31 |
|
ssn0 |
|
32 |
12 30 31
|
syl2anc |
|
33 |
32
|
neneqd |
|
34 |
1 6 2 7
|
mgmidsssn0 |
|
35 |
3 34
|
syl |
|
36 |
|
sssn |
|
37 |
35 36
|
sylib |
|
38 |
37
|
orcanai |
|
39 |
33 38
|
syldan |
|
40 |
21 39
|
eleqtrrid |
|
41 |
19 40
|
sselid |
|
42 |
|
oveq1 |
|
43 |
42
|
eqeq1d |
|
44 |
43
|
ralbidv |
|
45 |
44
|
elrab |
|
46 |
|
oveq2 |
|
47 |
|
id |
|
48 |
46 47
|
eqeq12d |
|
49 |
48
|
rspcva |
|
50 |
45 49
|
sylbi |
|
51 |
41 50
|
syl |
|
52 |
4
|
adantr |
|
53 |
35
|
ad2antrr |
|
54 |
14
|
ffvelrnda |
|
55 |
53 54
|
sseldd |
|
56 |
|
elsni |
|
57 |
55 56
|
syl |
|
58 |
51 52 57
|
seqid3 |
|
59 |
15 58
|
eqtr4d |
|
60 |
3
|
adantr |
|
61 |
4
|
adantr |
|
62 |
5
|
adantr |
|
63 |
|
simpr |
|
64 |
1 2 60 61 62 7 63
|
gsumval2a |
|
65 |
59 64
|
pm2.61dan |
|