Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval2.b |
|
2 |
|
gsumval2.p |
|
3 |
|
gsumval2.g |
|
4 |
|
gsumval2.n |
|
5 |
|
gsumval2.f |
|
6 |
|
gsumval2a.o |
|
7 |
|
gsumval2a.f |
|
8 |
|
eqid |
|
9 |
|
eqidd |
|
10 |
|
ovexd |
|
11 |
1 8 2 6 9 3 10 5
|
gsumval |
|
12 |
7
|
iffalsed |
|
13 |
|
fzf |
|
14 |
|
ffn |
|
15 |
13 14
|
ax-mp |
|
16 |
|
eluzel2 |
|
17 |
4 16
|
syl |
|
18 |
|
eluzelz |
|
19 |
4 18
|
syl |
|
20 |
|
fnovrn |
|
21 |
15 17 19 20
|
mp3an2i |
|
22 |
21
|
iftrued |
|
23 |
12 22
|
eqtrd |
|
24 |
11 23
|
eqtrd |
|
25 |
|
fvex |
|
26 |
|
fzopth |
|
27 |
4 26
|
syl |
|
28 |
|
simpl |
|
29 |
28
|
seqeq1d |
|
30 |
|
simpr |
|
31 |
29 30
|
fveq12d |
|
32 |
31
|
eqcomd |
|
33 |
|
eqeq1 |
|
34 |
32 33
|
syl5ibrcom |
|
35 |
27 34
|
syl6bi |
|
36 |
35
|
impd |
|
37 |
36
|
rexlimdvw |
|
38 |
37
|
exlimdv |
|
39 |
17
|
adantr |
|
40 |
|
oveq2 |
|
41 |
40
|
eqcomd |
|
42 |
41
|
biantrurd |
|
43 |
|
fveq2 |
|
44 |
43
|
eqeq2d |
|
45 |
42 44
|
bitr3d |
|
46 |
45
|
rspcev |
|
47 |
4 46
|
sylan |
|
48 |
|
fveq2 |
|
49 |
|
oveq1 |
|
50 |
49
|
eqeq2d |
|
51 |
|
seqeq1 |
|
52 |
51
|
fveq1d |
|
53 |
52
|
eqeq2d |
|
54 |
50 53
|
anbi12d |
|
55 |
48 54
|
rexeqbidv |
|
56 |
55
|
spcegv |
|
57 |
39 47 56
|
sylc |
|
58 |
57
|
ex |
|
59 |
38 58
|
impbid |
|
60 |
59
|
adantr |
|
61 |
60
|
iota5 |
|
62 |
25 61
|
mpan2 |
|
63 |
24 62
|
eqtrd |
|