| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval2.b |
|
| 2 |
|
gsumval2.p |
|
| 3 |
|
gsumval2.g |
|
| 4 |
|
gsumval2.n |
|
| 5 |
|
gsumval2.f |
|
| 6 |
|
gsumval2a.o |
|
| 7 |
|
gsumval2a.f |
|
| 8 |
|
eqid |
|
| 9 |
|
eqidd |
|
| 10 |
|
ovexd |
|
| 11 |
1 8 2 6 9 3 10 5
|
gsumval |
|
| 12 |
7
|
iffalsed |
|
| 13 |
|
fzf |
|
| 14 |
|
ffn |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
|
eluzel2 |
|
| 17 |
4 16
|
syl |
|
| 18 |
|
eluzelz |
|
| 19 |
4 18
|
syl |
|
| 20 |
|
fnovrn |
|
| 21 |
15 17 19 20
|
mp3an2i |
|
| 22 |
21
|
iftrued |
|
| 23 |
12 22
|
eqtrd |
|
| 24 |
11 23
|
eqtrd |
|
| 25 |
|
fvex |
|
| 26 |
|
fzopth |
|
| 27 |
4 26
|
syl |
|
| 28 |
|
simpl |
|
| 29 |
28
|
seqeq1d |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
fveq12d |
|
| 32 |
31
|
eqcomd |
|
| 33 |
|
eqeq1 |
|
| 34 |
32 33
|
syl5ibrcom |
|
| 35 |
27 34
|
biimtrdi |
|
| 36 |
35
|
impd |
|
| 37 |
36
|
rexlimdvw |
|
| 38 |
37
|
exlimdv |
|
| 39 |
17
|
adantr |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eqcomd |
|
| 42 |
41
|
biantrurd |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
42 44
|
bitr3d |
|
| 46 |
45
|
rspcev |
|
| 47 |
4 46
|
sylan |
|
| 48 |
|
fveq2 |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
|
seqeq1 |
|
| 52 |
51
|
fveq1d |
|
| 53 |
52
|
eqeq2d |
|
| 54 |
50 53
|
anbi12d |
|
| 55 |
48 54
|
rexeqbidv |
|
| 56 |
55
|
spcegv |
|
| 57 |
39 47 56
|
sylc |
|
| 58 |
57
|
ex |
|
| 59 |
38 58
|
impbid |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
iota5 |
|
| 62 |
25 61
|
mpan2 |
|
| 63 |
24 62
|
eqtrd |
|