Metamath Proof Explorer


Theorem gsumval3

Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3.m φ M
gsumval3.h φ H : 1 M 1-1 A
gsumval3.n φ F supp 0 ˙ ran H
gsumval3.w W = F H supp 0 ˙
Assertion gsumval3 φ G F = seq 1 + ˙ F H M

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3.m φ M
10 gsumval3.h φ H : 1 M 1-1 A
11 gsumval3.n φ F supp 0 ˙ ran H
12 gsumval3.w W = F H supp 0 ˙
13 2 gsumz G Mnd A V G x A 0 ˙ = 0 ˙
14 5 6 13 syl2anc φ G x A 0 ˙ = 0 ˙
15 14 adantr φ W = G x A 0 ˙ = 0 ˙
16 7 feqmptd φ F = x A F x
17 16 adantr φ W = F = x A F x
18 f1f H : 1 M 1-1 A H : 1 M A
19 10 18 syl φ H : 1 M A
20 19 ad2antrr φ W = x ran H H : 1 M A
21 f1f1orn H : 1 M 1-1 A H : 1 M 1-1 onto ran H
22 10 21 syl φ H : 1 M 1-1 onto ran H
23 22 adantr φ W = H : 1 M 1-1 onto ran H
24 f1ocnv H : 1 M 1-1 onto ran H H -1 : ran H 1-1 onto 1 M
25 f1of H -1 : ran H 1-1 onto 1 M H -1 : ran H 1 M
26 23 24 25 3syl φ W = H -1 : ran H 1 M
27 26 ffvelrnda φ W = x ran H H -1 x 1 M
28 fvco3 H : 1 M A H -1 x 1 M F H H -1 x = F H H -1 x
29 20 27 28 syl2anc φ W = x ran H F H H -1 x = F H H -1 x
30 simpr φ W = W =
31 30 difeq2d φ W = 1 M W = 1 M
32 dif0 1 M = 1 M
33 31 32 eqtrdi φ W = 1 M W = 1 M
34 33 adantr φ W = x ran H 1 M W = 1 M
35 27 34 eleqtrrd φ W = x ran H H -1 x 1 M W
36 fco F : A B H : 1 M A F H : 1 M B
37 7 19 36 syl2anc φ F H : 1 M B
38 37 adantr φ W = F H : 1 M B
39 12 eqimss2i F H supp 0 ˙ W
40 39 a1i φ W = F H supp 0 ˙ W
41 ovexd φ W = 1 M V
42 2 fvexi 0 ˙ V
43 42 a1i φ W = 0 ˙ V
44 38 40 41 43 suppssr φ W = H -1 x 1 M W F H H -1 x = 0 ˙
45 35 44 syldan φ W = x ran H F H H -1 x = 0 ˙
46 f1ocnvfv2 H : 1 M 1-1 onto ran H x ran H H H -1 x = x
47 23 46 sylan φ W = x ran H H H -1 x = x
48 47 fveq2d φ W = x ran H F H H -1 x = F x
49 29 45 48 3eqtr3rd φ W = x ran H F x = 0 ˙
50 fvex F x V
51 50 elsn F x 0 ˙ F x = 0 ˙
52 49 51 sylibr φ W = x ran H F x 0 ˙
53 52 adantlr φ W = x A x ran H F x 0 ˙
54 eldif x A ran H x A ¬ x ran H
55 42 a1i φ 0 ˙ V
56 7 11 6 55 suppssr φ x A ran H F x = 0 ˙
57 56 51 sylibr φ x A ran H F x 0 ˙
58 54 57 sylan2br φ x A ¬ x ran H F x 0 ˙
59 58 adantlr φ W = x A ¬ x ran H F x 0 ˙
60 59 anassrs φ W = x A ¬ x ran H F x 0 ˙
61 53 60 pm2.61dan φ W = x A F x 0 ˙
62 61 51 sylib φ W = x A F x = 0 ˙
63 62 mpteq2dva φ W = x A F x = x A 0 ˙
64 17 63 eqtrd φ W = F = x A 0 ˙
65 64 oveq2d φ W = G F = G x A 0 ˙
66 1 2 mndidcl G Mnd 0 ˙ B
67 1 3 2 mndlid G Mnd 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
68 5 66 67 syl2anc2 φ 0 ˙ + ˙ 0 ˙ = 0 ˙
69 68 adantr φ W = 0 ˙ + ˙ 0 ˙ = 0 ˙
70 nnuz = 1
71 9 70 eleqtrdi φ M 1
72 71 adantr φ W = M 1
73 33 eleq2d φ W = x 1 M W x 1 M
74 73 biimpar φ W = x 1 M x 1 M W
75 38 40 41 43 suppssr φ W = x 1 M W F H x = 0 ˙
76 74 75 syldan φ W = x 1 M F H x = 0 ˙
77 69 72 76 seqid3 φ W = seq 1 + ˙ F H M = 0 ˙
78 15 65 77 3eqtr4d φ W = G F = seq 1 + ˙ F H M
79 fzf : × 𝒫
80 ffn : × 𝒫 Fn ×
81 ovelrn Fn × A ran m n A = m n
82 79 80 81 mp2b A ran m n A = m n
83 5 ad2antrr φ W A = m n G Mnd
84 simpr φ W A = m n A = m n
85 frel F : A B Rel F
86 reldm0 Rel F F = dom F =
87 7 85 86 3syl φ F = dom F =
88 7 fdmd φ dom F = A
89 88 eqeq1d φ dom F = A =
90 87 89 bitrd φ F = A =
91 coeq1 F = F H = H
92 co01 H =
93 91 92 eqtrdi F = F H =
94 93 oveq1d F = F H supp 0 ˙ = supp 0 ˙
95 supp0 0 ˙ V supp 0 ˙ =
96 42 95 ax-mp supp 0 ˙ =
97 94 96 eqtrdi F = F H supp 0 ˙ =
98 12 97 eqtrid F = W =
99 90 98 syl6bir φ A = W =
100 99 necon3d φ W A
101 100 imp φ W A
102 101 adantr φ W A = m n A
103 84 102 eqnetrrd φ W A = m n m n
104 fzn0 m n n m
105 103 104 sylib φ W A = m n n m
106 7 ad2antrr φ W A = m n F : A B
107 84 feq2d φ W A = m n F : A B F : m n B
108 106 107 mpbid φ W A = m n F : m n B
109 1 3 83 105 108 gsumval2 φ W A = m n G F = seq m + ˙ F n
110 frn H : 1 M A ran H A
111 10 18 110 3syl φ ran H A
112 111 ad2antrr φ W A = m n ran H A
113 112 84 sseqtrd φ W A = m n ran H m n
114 fzssuz m n m
115 uzssz m
116 zssre
117 115 116 sstri m
118 114 117 sstri m n
119 113 118 sstrdi φ W A = m n ran H
120 ltso < Or
121 soss ran H < Or < Or ran H
122 119 120 121 mpisyl φ W A = m n < Or ran H
123 fzfi 1 M Fin
124 123 a1i φ 1 M Fin
125 19 124 fexd φ H V
126 f1oen3g H V H : 1 M 1-1 onto ran H 1 M ran H
127 125 22 126 syl2anc φ 1 M ran H
128 enfi 1 M ran H 1 M Fin ran H Fin
129 127 128 syl φ 1 M Fin ran H Fin
130 123 129 mpbii φ ran H Fin
131 130 ad2antrr φ W A = m n ran H Fin
132 fz1iso < Or ran H ran H Fin f f Isom < , < 1 ran H ran H
133 122 131 132 syl2anc φ W A = m n f f Isom < , < 1 ran H ran H
134 9 nnnn0d φ M 0
135 hashfz1 M 0 1 M = M
136 134 135 syl φ 1 M = M
137 124 22 hasheqf1od φ 1 M = ran H
138 136 137 eqtr3d φ M = ran H
139 138 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H M = ran H
140 139 fveq2d φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F f M = seq 1 + ˙ F f ran H
141 5 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H G Mnd
142 1 3 mndcl G Mnd x B y B x + ˙ y B
143 142 3expb G Mnd x B y B x + ˙ y B
144 141 143 sylan φ W A = m n f Isom < , < 1 ran H ran H x B y B x + ˙ y B
145 8 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran F Z ran F
146 145 sselda φ W A = m n f Isom < , < 1 ran H ran H x ran F x Z ran F
147 3 4 cntzi x Z ran F y ran F x + ˙ y = y + ˙ x
148 146 147 sylan φ W A = m n f Isom < , < 1 ran H ran H x ran F y ran F x + ˙ y = y + ˙ x
149 148 anasss φ W A = m n f Isom < , < 1 ran H ran H x ran F y ran F x + ˙ y = y + ˙ x
150 1 3 mndass G Mnd x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
151 141 150 sylan φ W A = m n f Isom < , < 1 ran H ran H x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
152 71 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H M 1
153 7 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H F : A B
154 153 frnd φ W A = m n f Isom < , < 1 ran H ran H ran F B
155 simprr φ W A = m n f Isom < , < 1 ran H ran H f Isom < , < 1 ran H ran H
156 isof1o f Isom < , < 1 ran H ran H f : 1 ran H 1-1 onto ran H
157 155 156 syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 ran H 1-1 onto ran H
158 139 oveq2d φ W A = m n f Isom < , < 1 ran H ran H 1 M = 1 ran H
159 158 f1oeq2d φ W A = m n f Isom < , < 1 ran H ran H f : 1 M 1-1 onto ran H f : 1 ran H 1-1 onto ran H
160 157 159 mpbird φ W A = m n f Isom < , < 1 ran H ran H f : 1 M 1-1 onto ran H
161 f1ocnv f : 1 M 1-1 onto ran H f -1 : ran H 1-1 onto 1 M
162 160 161 syl φ W A = m n f Isom < , < 1 ran H ran H f -1 : ran H 1-1 onto 1 M
163 22 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H H : 1 M 1-1 onto ran H
164 f1oco f -1 : ran H 1-1 onto 1 M H : 1 M 1-1 onto ran H f -1 H : 1 M 1-1 onto 1 M
165 162 163 164 syl2anc φ W A = m n f Isom < , < 1 ran H ran H f -1 H : 1 M 1-1 onto 1 M
166 ffn F : A B F Fn A
167 dffn4 F Fn A F : A onto ran F
168 166 167 sylib F : A B F : A onto ran F
169 fof F : A onto ran F F : A ran F
170 153 168 169 3syl φ W A = m n f Isom < , < 1 ran H ran H F : A ran F
171 f1of f : 1 M 1-1 onto ran H f : 1 M ran H
172 160 171 syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 M ran H
173 111 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran H A
174 172 173 fssd φ W A = m n f Isom < , < 1 ran H ran H f : 1 M A
175 fco F : A ran F f : 1 M A F f : 1 M ran F
176 170 174 175 syl2anc φ W A = m n f Isom < , < 1 ran H ran H F f : 1 M ran F
177 176 ffvelrnda φ W A = m n f Isom < , < 1 ran H ran H x 1 M F f x ran F
178 f1ococnv2 f : 1 M 1-1 onto ran H f f -1 = I ran H
179 160 178 syl φ W A = m n f Isom < , < 1 ran H ran H f f -1 = I ran H
180 179 coeq1d φ W A = m n f Isom < , < 1 ran H ran H f f -1 H = I ran H H
181 f1of H : 1 M 1-1 onto ran H H : 1 M ran H
182 fcoi2 H : 1 M ran H I ran H H = H
183 163 181 182 3syl φ W A = m n f Isom < , < 1 ran H ran H I ran H H = H
184 180 183 eqtr2d φ W A = m n f Isom < , < 1 ran H ran H H = f f -1 H
185 coass f f -1 H = f f -1 H
186 184 185 eqtrdi φ W A = m n f Isom < , < 1 ran H ran H H = f f -1 H
187 186 coeq2d φ W A = m n f Isom < , < 1 ran H ran H F H = F f f -1 H
188 coass F f f -1 H = F f f -1 H
189 187 188 eqtr4di φ W A = m n f Isom < , < 1 ran H ran H F H = F f f -1 H
190 189 fveq1d φ W A = m n f Isom < , < 1 ran H ran H F H k = F f f -1 H k
191 190 adantr φ W A = m n f Isom < , < 1 ran H ran H k 1 M F H k = F f f -1 H k
192 f1of f -1 : ran H 1-1 onto 1 M f -1 : ran H 1 M
193 160 161 192 3syl φ W A = m n f Isom < , < 1 ran H ran H f -1 : ran H 1 M
194 163 181 syl φ W A = m n f Isom < , < 1 ran H ran H H : 1 M ran H
195 fco f -1 : ran H 1 M H : 1 M ran H f -1 H : 1 M 1 M
196 193 194 195 syl2anc φ W A = m n f Isom < , < 1 ran H ran H f -1 H : 1 M 1 M
197 fvco3 f -1 H : 1 M 1 M k 1 M F f f -1 H k = F f f -1 H k
198 196 197 sylan φ W A = m n f Isom < , < 1 ran H ran H k 1 M F f f -1 H k = F f f -1 H k
199 191 198 eqtrd φ W A = m n f Isom < , < 1 ran H ran H k 1 M F H k = F f f -1 H k
200 144 149 151 152 154 165 177 199 seqf1o φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq 1 + ˙ F f M
201 1 3 2 mndlid G Mnd x B 0 ˙ + ˙ x = x
202 141 201 sylan φ W A = m n f Isom < , < 1 ran H ran H x B 0 ˙ + ˙ x = x
203 1 3 2 mndrid G Mnd x B x + ˙ 0 ˙ = x
204 141 203 sylan φ W A = m n f Isom < , < 1 ran H ran H x B x + ˙ 0 ˙ = x
205 141 66 syl φ W A = m n f Isom < , < 1 ran H ran H 0 ˙ B
206 fdm H : 1 M A dom H = 1 M
207 10 18 206 3syl φ dom H = 1 M
208 eluzfz1 M 1 1 1 M
209 ne0i 1 1 M 1 M
210 71 208 209 3syl φ 1 M
211 207 210 eqnetrd φ dom H
212 dm0rn0 dom H = ran H =
213 212 necon3bii dom H ran H
214 211 213 sylib φ ran H
215 214 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran H
216 113 adantrr φ W A = m n f Isom < , < 1 ran H ran H ran H m n
217 simprl φ W A = m n f Isom < , < 1 ran H ran H A = m n
218 217 eleq2d φ W A = m n f Isom < , < 1 ran H ran H x A x m n
219 218 biimpar φ W A = m n f Isom < , < 1 ran H ran H x m n x A
220 153 ffvelrnda φ W A = m n f Isom < , < 1 ran H ran H x A F x B
221 219 220 syldan φ W A = m n f Isom < , < 1 ran H ran H x m n F x B
222 217 difeq1d φ W A = m n f Isom < , < 1 ran H ran H A ran H = m n ran H
223 222 eleq2d φ W A = m n f Isom < , < 1 ran H ran H x A ran H x m n ran H
224 223 biimpar φ W A = m n f Isom < , < 1 ran H ran H x m n ran H x A ran H
225 56 ad4ant14 φ W A = m n f Isom < , < 1 ran H ran H x A ran H F x = 0 ˙
226 224 225 syldan φ W A = m n f Isom < , < 1 ran H ran H x m n ran H F x = 0 ˙
227 f1of f : 1 ran H 1-1 onto ran H f : 1 ran H ran H
228 155 156 227 3syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 ran H ran H
229 fvco3 f : 1 ran H ran H y 1 ran H F f y = F f y
230 228 229 sylan φ W A = m n f Isom < , < 1 ran H ran H y 1 ran H F f y = F f y
231 202 204 144 205 155 215 216 221 226 230 seqcoll2 φ W A = m n f Isom < , < 1 ran H ran H seq m + ˙ F n = seq 1 + ˙ F f ran H
232 140 200 231 3eqtr4d φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
233 232 expr φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
234 233 exlimdv φ W A = m n f f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
235 133 234 mpd φ W A = m n seq 1 + ˙ F H M = seq m + ˙ F n
236 109 235 eqtr4d φ W A = m n G F = seq 1 + ˙ F H M
237 236 ex φ W A = m n G F = seq 1 + ˙ F H M
238 237 rexlimdvw φ W n A = m n G F = seq 1 + ˙ F H M
239 238 rexlimdvw φ W m n A = m n G F = seq 1 + ˙ F H M
240 82 239 syl5bi φ W A ran G F = seq 1 + ˙ F H M
241 suppssdm F H supp 0 ˙ dom F H
242 12 241 eqsstri W dom F H
243 242 37 fssdm φ W 1 M
244 fz1ssnn 1 M
245 nnssre
246 244 245 sstri 1 M
247 243 246 sstrdi φ W
248 soss W < Or < Or W
249 247 120 248 mpisyl φ < Or W
250 ssfi 1 M Fin W 1 M W Fin
251 123 243 250 sylancr φ W Fin
252 fz1iso < Or W W Fin f f Isom < , < 1 W W
253 249 251 252 syl2anc φ f f Isom < , < 1 W W
254 253 ad2antrr φ W ¬ A ran f f Isom < , < 1 W W
255 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem2 φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W
256 5 ad2antrr φ W ¬ A ran f Isom < , < 1 W W G Mnd
257 256 201 sylan φ W ¬ A ran f Isom < , < 1 W W x B 0 ˙ + ˙ x = x
258 256 203 sylan φ W ¬ A ran f Isom < , < 1 W W x B x + ˙ 0 ˙ = x
259 256 143 sylan φ W ¬ A ran f Isom < , < 1 W W x B y B x + ˙ y B
260 256 66 syl φ W ¬ A ran f Isom < , < 1 W W 0 ˙ B
261 simprr φ W ¬ A ran f Isom < , < 1 W W f Isom < , < 1 W W
262 simplr φ W ¬ A ran f Isom < , < 1 W W W
263 243 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W 1 M
264 37 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F H : 1 M B
265 264 ffvelrnda φ W ¬ A ran f Isom < , < 1 W W x 1 M F H x B
266 39 a1i φ W ¬ A ran f Isom < , < 1 W W F H supp 0 ˙ W
267 ovexd φ W ¬ A ran f Isom < , < 1 W W 1 M V
268 42 a1i φ W ¬ A ran f Isom < , < 1 W W 0 ˙ V
269 264 266 267 268 suppssr φ W ¬ A ran f Isom < , < 1 W W x 1 M W F H x = 0 ˙
270 coass F H f = F H f
271 270 fveq1i F H f y = F H f y
272 isof1o f Isom < , < 1 W W f : 1 W 1-1 onto W
273 f1of f : 1 W 1-1 onto W f : 1 W W
274 261 272 273 3syl φ W ¬ A ran f Isom < , < 1 W W f : 1 W W
275 fvco3 f : 1 W W y 1 W F H f y = F H f y
276 274 275 sylan φ W ¬ A ran f Isom < , < 1 W W y 1 W F H f y = F H f y
277 271 276 eqtr3id φ W ¬ A ran f Isom < , < 1 W W y 1 W F H f y = F H f y
278 257 258 259 260 261 262 263 265 269 277 seqcoll2 φ W ¬ A ran f Isom < , < 1 W W seq 1 + ˙ F H M = seq 1 + ˙ F H f W
279 255 278 eqtr4d φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H M
280 279 expr φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H M
281 280 exlimdv φ W ¬ A ran f f Isom < , < 1 W W G F = seq 1 + ˙ F H M
282 254 281 mpd φ W ¬ A ran G F = seq 1 + ˙ F H M
283 282 ex φ W ¬ A ran G F = seq 1 + ˙ F H M
284 240 283 pm2.61d φ W G F = seq 1 + ˙ F H M
285 78 284 pm2.61dane φ G F = seq 1 + ˙ F H M