Metamath Proof Explorer


Theorem gsumval3

Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3.m φ M
gsumval3.h φ H : 1 M 1-1 A
gsumval3.n φ F supp 0 ˙ ran H
gsumval3.w W = F H supp 0 ˙
Assertion gsumval3 φ G F = seq 1 + ˙ F H M

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3.m φ M
10 gsumval3.h φ H : 1 M 1-1 A
11 gsumval3.n φ F supp 0 ˙ ran H
12 gsumval3.w W = F H supp 0 ˙
13 2 gsumz G Mnd A V G x A 0 ˙ = 0 ˙
14 5 6 13 syl2anc φ G x A 0 ˙ = 0 ˙
15 14 adantr φ W = G x A 0 ˙ = 0 ˙
16 7 feqmptd φ F = x A F x
17 16 adantr φ W = F = x A F x
18 f1f H : 1 M 1-1 A H : 1 M A
19 10 18 syl φ H : 1 M A
20 19 ad2antrr φ W = x ran H H : 1 M A
21 f1f1orn H : 1 M 1-1 A H : 1 M 1-1 onto ran H
22 10 21 syl φ H : 1 M 1-1 onto ran H
23 22 adantr φ W = H : 1 M 1-1 onto ran H
24 f1ocnv H : 1 M 1-1 onto ran H H -1 : ran H 1-1 onto 1 M
25 f1of H -1 : ran H 1-1 onto 1 M H -1 : ran H 1 M
26 23 24 25 3syl φ W = H -1 : ran H 1 M
27 26 ffvelrnda φ W = x ran H H -1 x 1 M
28 fvco3 H : 1 M A H -1 x 1 M F H H -1 x = F H H -1 x
29 20 27 28 syl2anc φ W = x ran H F H H -1 x = F H H -1 x
30 simpr φ W = W =
31 30 difeq2d φ W = 1 M W = 1 M
32 dif0 1 M = 1 M
33 31 32 eqtrdi φ W = 1 M W = 1 M
34 33 adantr φ W = x ran H 1 M W = 1 M
35 27 34 eleqtrrd φ W = x ran H H -1 x 1 M W
36 fco F : A B H : 1 M A F H : 1 M B
37 7 19 36 syl2anc φ F H : 1 M B
38 37 adantr φ W = F H : 1 M B
39 12 eqimss2i F H supp 0 ˙ W
40 39 a1i φ W = F H supp 0 ˙ W
41 ovexd φ W = 1 M V
42 2 fvexi 0 ˙ V
43 42 a1i φ W = 0 ˙ V
44 38 40 41 43 suppssr φ W = H -1 x 1 M W F H H -1 x = 0 ˙
45 35 44 syldan φ W = x ran H F H H -1 x = 0 ˙
46 f1ocnvfv2 H : 1 M 1-1 onto ran H x ran H H H -1 x = x
47 23 46 sylan φ W = x ran H H H -1 x = x
48 47 fveq2d φ W = x ran H F H H -1 x = F x
49 29 45 48 3eqtr3rd φ W = x ran H F x = 0 ˙
50 fvex F x V
51 50 elsn F x 0 ˙ F x = 0 ˙
52 49 51 sylibr φ W = x ran H F x 0 ˙
53 52 adantlr φ W = x A x ran H F x 0 ˙
54 eldif x A ran H x A ¬ x ran H
55 42 a1i φ 0 ˙ V
56 7 11 6 55 suppssr φ x A ran H F x = 0 ˙
57 56 51 sylibr φ x A ran H F x 0 ˙
58 54 57 sylan2br φ x A ¬ x ran H F x 0 ˙
59 58 adantlr φ W = x A ¬ x ran H F x 0 ˙
60 59 anassrs φ W = x A ¬ x ran H F x 0 ˙
61 53 60 pm2.61dan φ W = x A F x 0 ˙
62 61 51 sylib φ W = x A F x = 0 ˙
63 62 mpteq2dva φ W = x A F x = x A 0 ˙
64 17 63 eqtrd φ W = F = x A 0 ˙
65 64 oveq2d φ W = G F = G x A 0 ˙
66 1 2 mndidcl G Mnd 0 ˙ B
67 1 3 2 mndlid G Mnd 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
68 5 66 67 syl2anc2 φ 0 ˙ + ˙ 0 ˙ = 0 ˙
69 68 adantr φ W = 0 ˙ + ˙ 0 ˙ = 0 ˙
70 nnuz = 1
71 9 70 eleqtrdi φ M 1
72 71 adantr φ W = M 1
73 33 eleq2d φ W = x 1 M W x 1 M
74 73 biimpar φ W = x 1 M x 1 M W
75 38 40 41 43 suppssr φ W = x 1 M W F H x = 0 ˙
76 74 75 syldan φ W = x 1 M F H x = 0 ˙
77 69 72 76 seqid3 φ W = seq 1 + ˙ F H M = 0 ˙
78 15 65 77 3eqtr4d φ W = G F = seq 1 + ˙ F H M
79 fzf : × 𝒫
80 ffn : × 𝒫 Fn ×
81 ovelrn Fn × A ran m n A = m n
82 79 80 81 mp2b A ran m n A = m n
83 5 ad2antrr φ W A = m n G Mnd
84 simpr φ W A = m n A = m n
85 frel F : A B Rel F
86 reldm0 Rel F F = dom F =
87 7 85 86 3syl φ F = dom F =
88 7 fdmd φ dom F = A
89 88 eqeq1d φ dom F = A =
90 87 89 bitrd φ F = A =
91 coeq1 F = F H = H
92 co01 H =
93 91 92 eqtrdi F = F H =
94 93 oveq1d F = F H supp 0 ˙ = supp 0 ˙
95 supp0 0 ˙ V supp 0 ˙ =
96 42 95 ax-mp supp 0 ˙ =
97 94 96 eqtrdi F = F H supp 0 ˙ =
98 12 97 syl5eq F = W =
99 90 98 syl6bir φ A = W =
100 99 necon3d φ W A
101 100 imp φ W A
102 101 adantr φ W A = m n A
103 84 102 eqnetrrd φ W A = m n m n
104 fzn0 m n n m
105 103 104 sylib φ W A = m n n m
106 7 ad2antrr φ W A = m n F : A B
107 84 feq2d φ W A = m n F : A B F : m n B
108 106 107 mpbid φ W A = m n F : m n B
109 1 3 83 105 108 gsumval2 φ W A = m n G F = seq m + ˙ F n
110 frn H : 1 M A ran H A
111 10 18 110 3syl φ ran H A
112 111 ad2antrr φ W A = m n ran H A
113 112 84 sseqtrd φ W A = m n ran H m n
114 fzssuz m n m
115 uzssz m
116 zssre
117 115 116 sstri m
118 114 117 sstri m n
119 113 118 sstrdi φ W A = m n ran H
120 ltso < Or
121 soss ran H < Or < Or ran H
122 119 120 121 mpisyl φ W A = m n < Or ran H
123 fzfi 1 M Fin
124 123 a1i φ 1 M Fin
125 fex2 H : 1 M A 1 M Fin A V H V
126 19 124 6 125 syl3anc φ H V
127 f1oen3g H V H : 1 M 1-1 onto ran H 1 M ran H
128 126 22 127 syl2anc φ 1 M ran H
129 enfi 1 M ran H 1 M Fin ran H Fin
130 128 129 syl φ 1 M Fin ran H Fin
131 123 130 mpbii φ ran H Fin
132 131 ad2antrr φ W A = m n ran H Fin
133 fz1iso < Or ran H ran H Fin f f Isom < , < 1 ran H ran H
134 122 132 133 syl2anc φ W A = m n f f Isom < , < 1 ran H ran H
135 9 nnnn0d φ M 0
136 hashfz1 M 0 1 M = M
137 135 136 syl φ 1 M = M
138 124 22 hasheqf1od φ 1 M = ran H
139 137 138 eqtr3d φ M = ran H
140 139 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H M = ran H
141 140 fveq2d φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F f M = seq 1 + ˙ F f ran H
142 5 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H G Mnd
143 1 3 mndcl G Mnd x B y B x + ˙ y B
144 143 3expb G Mnd x B y B x + ˙ y B
145 142 144 sylan φ W A = m n f Isom < , < 1 ran H ran H x B y B x + ˙ y B
146 8 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran F Z ran F
147 146 sselda φ W A = m n f Isom < , < 1 ran H ran H x ran F x Z ran F
148 3 4 cntzi x Z ran F y ran F x + ˙ y = y + ˙ x
149 147 148 sylan φ W A = m n f Isom < , < 1 ran H ran H x ran F y ran F x + ˙ y = y + ˙ x
150 149 anasss φ W A = m n f Isom < , < 1 ran H ran H x ran F y ran F x + ˙ y = y + ˙ x
151 1 3 mndass G Mnd x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
152 142 151 sylan φ W A = m n f Isom < , < 1 ran H ran H x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
153 71 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H M 1
154 7 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H F : A B
155 154 frnd φ W A = m n f Isom < , < 1 ran H ran H ran F B
156 simprr φ W A = m n f Isom < , < 1 ran H ran H f Isom < , < 1 ran H ran H
157 isof1o f Isom < , < 1 ran H ran H f : 1 ran H 1-1 onto ran H
158 156 157 syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 ran H 1-1 onto ran H
159 140 oveq2d φ W A = m n f Isom < , < 1 ran H ran H 1 M = 1 ran H
160 159 f1oeq2d φ W A = m n f Isom < , < 1 ran H ran H f : 1 M 1-1 onto ran H f : 1 ran H 1-1 onto ran H
161 158 160 mpbird φ W A = m n f Isom < , < 1 ran H ran H f : 1 M 1-1 onto ran H
162 f1ocnv f : 1 M 1-1 onto ran H f -1 : ran H 1-1 onto 1 M
163 161 162 syl φ W A = m n f Isom < , < 1 ran H ran H f -1 : ran H 1-1 onto 1 M
164 22 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H H : 1 M 1-1 onto ran H
165 f1oco f -1 : ran H 1-1 onto 1 M H : 1 M 1-1 onto ran H f -1 H : 1 M 1-1 onto 1 M
166 163 164 165 syl2anc φ W A = m n f Isom < , < 1 ran H ran H f -1 H : 1 M 1-1 onto 1 M
167 ffn F : A B F Fn A
168 dffn4 F Fn A F : A onto ran F
169 167 168 sylib F : A B F : A onto ran F
170 fof F : A onto ran F F : A ran F
171 154 169 170 3syl φ W A = m n f Isom < , < 1 ran H ran H F : A ran F
172 f1of f : 1 M 1-1 onto ran H f : 1 M ran H
173 161 172 syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 M ran H
174 111 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran H A
175 173 174 fssd φ W A = m n f Isom < , < 1 ran H ran H f : 1 M A
176 fco F : A ran F f : 1 M A F f : 1 M ran F
177 171 175 176 syl2anc φ W A = m n f Isom < , < 1 ran H ran H F f : 1 M ran F
178 177 ffvelrnda φ W A = m n f Isom < , < 1 ran H ran H x 1 M F f x ran F
179 f1ococnv2 f : 1 M 1-1 onto ran H f f -1 = I ran H
180 161 179 syl φ W A = m n f Isom < , < 1 ran H ran H f f -1 = I ran H
181 180 coeq1d φ W A = m n f Isom < , < 1 ran H ran H f f -1 H = I ran H H
182 f1of H : 1 M 1-1 onto ran H H : 1 M ran H
183 fcoi2 H : 1 M ran H I ran H H = H
184 164 182 183 3syl φ W A = m n f Isom < , < 1 ran H ran H I ran H H = H
185 181 184 eqtr2d φ W A = m n f Isom < , < 1 ran H ran H H = f f -1 H
186 coass f f -1 H = f f -1 H
187 185 186 eqtrdi φ W A = m n f Isom < , < 1 ran H ran H H = f f -1 H
188 187 coeq2d φ W A = m n f Isom < , < 1 ran H ran H F H = F f f -1 H
189 coass F f f -1 H = F f f -1 H
190 188 189 eqtr4di φ W A = m n f Isom < , < 1 ran H ran H F H = F f f -1 H
191 190 fveq1d φ W A = m n f Isom < , < 1 ran H ran H F H k = F f f -1 H k
192 191 adantr φ W A = m n f Isom < , < 1 ran H ran H k 1 M F H k = F f f -1 H k
193 f1of f -1 : ran H 1-1 onto 1 M f -1 : ran H 1 M
194 161 162 193 3syl φ W A = m n f Isom < , < 1 ran H ran H f -1 : ran H 1 M
195 164 182 syl φ W A = m n f Isom < , < 1 ran H ran H H : 1 M ran H
196 fco f -1 : ran H 1 M H : 1 M ran H f -1 H : 1 M 1 M
197 194 195 196 syl2anc φ W A = m n f Isom < , < 1 ran H ran H f -1 H : 1 M 1 M
198 fvco3 f -1 H : 1 M 1 M k 1 M F f f -1 H k = F f f -1 H k
199 197 198 sylan φ W A = m n f Isom < , < 1 ran H ran H k 1 M F f f -1 H k = F f f -1 H k
200 192 199 eqtrd φ W A = m n f Isom < , < 1 ran H ran H k 1 M F H k = F f f -1 H k
201 145 150 152 153 155 166 178 200 seqf1o φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq 1 + ˙ F f M
202 1 3 2 mndlid G Mnd x B 0 ˙ + ˙ x = x
203 142 202 sylan φ W A = m n f Isom < , < 1 ran H ran H x B 0 ˙ + ˙ x = x
204 1 3 2 mndrid G Mnd x B x + ˙ 0 ˙ = x
205 142 204 sylan φ W A = m n f Isom < , < 1 ran H ran H x B x + ˙ 0 ˙ = x
206 142 66 syl φ W A = m n f Isom < , < 1 ran H ran H 0 ˙ B
207 fdm H : 1 M A dom H = 1 M
208 10 18 207 3syl φ dom H = 1 M
209 eluzfz1 M 1 1 1 M
210 ne0i 1 1 M 1 M
211 71 209 210 3syl φ 1 M
212 208 211 eqnetrd φ dom H
213 dm0rn0 dom H = ran H =
214 213 necon3bii dom H ran H
215 212 214 sylib φ ran H
216 215 ad2antrr φ W A = m n f Isom < , < 1 ran H ran H ran H
217 113 adantrr φ W A = m n f Isom < , < 1 ran H ran H ran H m n
218 simprl φ W A = m n f Isom < , < 1 ran H ran H A = m n
219 218 eleq2d φ W A = m n f Isom < , < 1 ran H ran H x A x m n
220 219 biimpar φ W A = m n f Isom < , < 1 ran H ran H x m n x A
221 154 ffvelrnda φ W A = m n f Isom < , < 1 ran H ran H x A F x B
222 220 221 syldan φ W A = m n f Isom < , < 1 ran H ran H x m n F x B
223 218 difeq1d φ W A = m n f Isom < , < 1 ran H ran H A ran H = m n ran H
224 223 eleq2d φ W A = m n f Isom < , < 1 ran H ran H x A ran H x m n ran H
225 224 biimpar φ W A = m n f Isom < , < 1 ran H ran H x m n ran H x A ran H
226 56 ad4ant14 φ W A = m n f Isom < , < 1 ran H ran H x A ran H F x = 0 ˙
227 225 226 syldan φ W A = m n f Isom < , < 1 ran H ran H x m n ran H F x = 0 ˙
228 f1of f : 1 ran H 1-1 onto ran H f : 1 ran H ran H
229 156 157 228 3syl φ W A = m n f Isom < , < 1 ran H ran H f : 1 ran H ran H
230 fvco3 f : 1 ran H ran H y 1 ran H F f y = F f y
231 229 230 sylan φ W A = m n f Isom < , < 1 ran H ran H y 1 ran H F f y = F f y
232 203 205 145 206 156 216 217 222 227 231 seqcoll2 φ W A = m n f Isom < , < 1 ran H ran H seq m + ˙ F n = seq 1 + ˙ F f ran H
233 141 201 232 3eqtr4d φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
234 233 expr φ W A = m n f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
235 234 exlimdv φ W A = m n f f Isom < , < 1 ran H ran H seq 1 + ˙ F H M = seq m + ˙ F n
236 134 235 mpd φ W A = m n seq 1 + ˙ F H M = seq m + ˙ F n
237 109 236 eqtr4d φ W A = m n G F = seq 1 + ˙ F H M
238 237 ex φ W A = m n G F = seq 1 + ˙ F H M
239 238 rexlimdvw φ W n A = m n G F = seq 1 + ˙ F H M
240 239 rexlimdvw φ W m n A = m n G F = seq 1 + ˙ F H M
241 82 240 syl5bi φ W A ran G F = seq 1 + ˙ F H M
242 suppssdm F H supp 0 ˙ dom F H
243 12 242 eqsstri W dom F H
244 243 37 fssdm φ W 1 M
245 fz1ssnn 1 M
246 nnssre
247 245 246 sstri 1 M
248 244 247 sstrdi φ W
249 soss W < Or < Or W
250 248 120 249 mpisyl φ < Or W
251 ssfi 1 M Fin W 1 M W Fin
252 123 244 251 sylancr φ W Fin
253 fz1iso < Or W W Fin f f Isom < , < 1 W W
254 250 252 253 syl2anc φ f f Isom < , < 1 W W
255 254 ad2antrr φ W ¬ A ran f f Isom < , < 1 W W
256 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem2 φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W
257 5 ad2antrr φ W ¬ A ran f Isom < , < 1 W W G Mnd
258 257 202 sylan φ W ¬ A ran f Isom < , < 1 W W x B 0 ˙ + ˙ x = x
259 257 204 sylan φ W ¬ A ran f Isom < , < 1 W W x B x + ˙ 0 ˙ = x
260 257 144 sylan φ W ¬ A ran f Isom < , < 1 W W x B y B x + ˙ y B
261 257 66 syl φ W ¬ A ran f Isom < , < 1 W W 0 ˙ B
262 simprr φ W ¬ A ran f Isom < , < 1 W W f Isom < , < 1 W W
263 simplr φ W ¬ A ran f Isom < , < 1 W W W
264 244 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W 1 M
265 37 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F H : 1 M B
266 265 ffvelrnda φ W ¬ A ran f Isom < , < 1 W W x 1 M F H x B
267 39 a1i φ W ¬ A ran f Isom < , < 1 W W F H supp 0 ˙ W
268 ovexd φ W ¬ A ran f Isom < , < 1 W W 1 M V
269 42 a1i φ W ¬ A ran f Isom < , < 1 W W 0 ˙ V
270 265 267 268 269 suppssr φ W ¬ A ran f Isom < , < 1 W W x 1 M W F H x = 0 ˙
271 coass F H f = F H f
272 271 fveq1i F H f y = F H f y
273 isof1o f Isom < , < 1 W W f : 1 W 1-1 onto W
274 f1of f : 1 W 1-1 onto W f : 1 W W
275 262 273 274 3syl φ W ¬ A ran f Isom < , < 1 W W f : 1 W W
276 fvco3 f : 1 W W y 1 W F H f y = F H f y
277 275 276 sylan φ W ¬ A ran f Isom < , < 1 W W y 1 W F H f y = F H f y
278 272 277 eqtr3id φ W ¬ A ran f Isom < , < 1 W W y 1 W F H f y = F H f y
279 258 259 260 261 262 263 264 266 270 278 seqcoll2 φ W ¬ A ran f Isom < , < 1 W W seq 1 + ˙ F H M = seq 1 + ˙ F H f W
280 256 279 eqtr4d φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H M
281 280 expr φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H M
282 281 exlimdv φ W ¬ A ran f f Isom < , < 1 W W G F = seq 1 + ˙ F H M
283 255 282 mpd φ W ¬ A ran G F = seq 1 + ˙ F H M
284 283 ex φ W ¬ A ran G F = seq 1 + ˙ F H M
285 241 284 pm2.61d φ W G F = seq 1 + ˙ F H M
286 78 285 pm2.61dane φ G F = seq 1 + ˙ F H M