| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b |  | 
						
							| 2 |  | gsumval3.0 |  | 
						
							| 3 |  | gsumval3.p |  | 
						
							| 4 |  | gsumval3.z |  | 
						
							| 5 |  | gsumval3.g |  | 
						
							| 6 |  | gsumval3.a |  | 
						
							| 7 |  | gsumval3.f |  | 
						
							| 8 |  | gsumval3.c |  | 
						
							| 9 |  | gsumval3a.t |  | 
						
							| 10 |  | gsumval3a.n |  | 
						
							| 11 |  | gsumval3a.w |  | 
						
							| 12 |  | gsumval3a.i |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 11 | a1i |  | 
						
							| 15 | 7 6 | fexd |  | 
						
							| 16 | 2 | fvexi |  | 
						
							| 17 |  | suppimacnv |  | 
						
							| 18 | 15 16 17 | sylancl |  | 
						
							| 19 | 1 2 3 13 | gsumvallem2 |  | 
						
							| 20 | 5 19 | syl |  | 
						
							| 21 | 20 | eqcomd |  | 
						
							| 22 | 21 | difeq2d |  | 
						
							| 23 | 22 | imaeq2d |  | 
						
							| 24 | 14 18 23 | 3eqtrd |  | 
						
							| 25 | 1 2 3 13 24 5 6 7 | gsumval |  | 
						
							| 26 | 20 | sseq2d |  | 
						
							| 27 | 11 | a1i |  | 
						
							| 28 | 7 6 | jca |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | fex |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 31 16 17 | sylancl |  | 
						
							| 33 | 7 | ffnd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | df-f |  | 
						
							| 37 | 34 35 36 | sylanbrc |  | 
						
							| 38 |  | disjdif |  | 
						
							| 39 |  | fimacnvdisj |  | 
						
							| 40 | 37 38 39 | sylancl |  | 
						
							| 41 | 27 32 40 | 3eqtrd |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 26 42 | sylbid |  | 
						
							| 44 | 43 | necon3ad |  | 
						
							| 45 | 10 44 | mpd |  | 
						
							| 46 | 45 | iffalsed |  | 
						
							| 47 | 12 | iffalsed |  | 
						
							| 48 | 25 46 47 | 3eqtrd |  |