Metamath Proof Explorer


Theorem gsumval3a

Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by AV, 29-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3a.t φ W Fin
gsumval3a.n φ W
gsumval3a.w W = F supp 0 ˙
gsumval3a.i φ ¬ A ran
Assertion gsumval3a φ G F = ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3a.t φ W Fin
10 gsumval3a.n φ W
11 gsumval3a.w W = F supp 0 ˙
12 gsumval3a.i φ ¬ A ran
13 eqid z B | y B z + ˙ y = y y + ˙ z = y = z B | y B z + ˙ y = y y + ˙ z = y
14 11 a1i φ W = F supp 0 ˙
15 7 6 fexd φ F V
16 2 fvexi 0 ˙ V
17 suppimacnv F V 0 ˙ V F supp 0 ˙ = F -1 V 0 ˙
18 15 16 17 sylancl φ F supp 0 ˙ = F -1 V 0 ˙
19 1 2 3 13 gsumvallem2 G Mnd z B | y B z + ˙ y = y y + ˙ z = y = 0 ˙
20 5 19 syl φ z B | y B z + ˙ y = y y + ˙ z = y = 0 ˙
21 20 eqcomd φ 0 ˙ = z B | y B z + ˙ y = y y + ˙ z = y
22 21 difeq2d φ V 0 ˙ = V z B | y B z + ˙ y = y y + ˙ z = y
23 22 imaeq2d φ F -1 V 0 ˙ = F -1 V z B | y B z + ˙ y = y y + ˙ z = y
24 14 18 23 3eqtrd φ W = F -1 V z B | y B z + ˙ y = y y + ˙ z = y
25 1 2 3 13 24 5 6 7 gsumval φ G F = if ran F z B | y B z + ˙ y = y y + ˙ z = y 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
26 20 sseq2d φ ran F z B | y B z + ˙ y = y y + ˙ z = y ran F 0 ˙
27 11 a1i φ ran F 0 ˙ W = F supp 0 ˙
28 7 6 jca φ F : A B A V
29 28 adantr φ ran F 0 ˙ F : A B A V
30 fex F : A B A V F V
31 29 30 syl φ ran F 0 ˙ F V
32 31 16 17 sylancl φ ran F 0 ˙ F supp 0 ˙ = F -1 V 0 ˙
33 7 ffnd φ F Fn A
34 33 adantr φ ran F 0 ˙ F Fn A
35 simpr φ ran F 0 ˙ ran F 0 ˙
36 df-f F : A 0 ˙ F Fn A ran F 0 ˙
37 34 35 36 sylanbrc φ ran F 0 ˙ F : A 0 ˙
38 disjdif 0 ˙ V 0 ˙ =
39 fimacnvdisj F : A 0 ˙ 0 ˙ V 0 ˙ = F -1 V 0 ˙ =
40 37 38 39 sylancl φ ran F 0 ˙ F -1 V 0 ˙ =
41 27 32 40 3eqtrd φ ran F 0 ˙ W =
42 41 ex φ ran F 0 ˙ W =
43 26 42 sylbid φ ran F z B | y B z + ˙ y = y y + ˙ z = y W =
44 43 necon3ad φ W ¬ ran F z B | y B z + ˙ y = y y + ˙ z = y
45 10 44 mpd φ ¬ ran F z B | y B z + ˙ y = y y + ˙ z = y
46 45 iffalsed φ if ran F z B | y B z + ˙ y = y y + ˙ z = y 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W = if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
47 12 iffalsed φ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W = ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
48 25 46 47 3eqtrd φ G F = ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W