Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval3.b |
|
2 |
|
gsumval3.0 |
|
3 |
|
gsumval3.p |
|
4 |
|
gsumval3.z |
|
5 |
|
gsumval3.g |
|
6 |
|
gsumval3.a |
|
7 |
|
gsumval3.f |
|
8 |
|
gsumval3.c |
|
9 |
|
gsumval3a.t |
|
10 |
|
gsumval3a.n |
|
11 |
|
gsumval3a.w |
|
12 |
|
gsumval3a.i |
|
13 |
|
eqid |
|
14 |
11
|
a1i |
|
15 |
7 6
|
fexd |
|
16 |
2
|
fvexi |
|
17 |
|
suppimacnv |
|
18 |
15 16 17
|
sylancl |
|
19 |
1 2 3 13
|
gsumvallem2 |
|
20 |
5 19
|
syl |
|
21 |
20
|
eqcomd |
|
22 |
21
|
difeq2d |
|
23 |
22
|
imaeq2d |
|
24 |
14 18 23
|
3eqtrd |
|
25 |
1 2 3 13 24 5 6 7
|
gsumval |
|
26 |
20
|
sseq2d |
|
27 |
11
|
a1i |
|
28 |
7 6
|
jca |
|
29 |
28
|
adantr |
|
30 |
|
fex |
|
31 |
29 30
|
syl |
|
32 |
31 16 17
|
sylancl |
|
33 |
7
|
ffnd |
|
34 |
33
|
adantr |
|
35 |
|
simpr |
|
36 |
|
df-f |
|
37 |
34 35 36
|
sylanbrc |
|
38 |
|
disjdif |
|
39 |
|
fimacnvdisj |
|
40 |
37 38 39
|
sylancl |
|
41 |
27 32 40
|
3eqtrd |
|
42 |
41
|
ex |
|
43 |
26 42
|
sylbid |
|
44 |
43
|
necon3ad |
|
45 |
10 44
|
mpd |
|
46 |
45
|
iffalsed |
|
47 |
12
|
iffalsed |
|
48 |
25 46 47
|
3eqtrd |
|