Metamath Proof Explorer


Theorem gsumval3eu

Description: The group sum as defined in gsumval3a is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3a.t φ W Fin
gsumval3a.n φ W
gsumval3a.s φ W A
Assertion gsumval3eu φ ∃! x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3a.t φ W Fin
10 gsumval3a.n φ W
11 gsumval3a.s φ W A
12 10 neneqd φ ¬ W =
13 fz1f1o W Fin W = W f f : 1 W 1-1 onto W
14 9 13 syl φ W = W f f : 1 W 1-1 onto W
15 14 ord φ ¬ W = W f f : 1 W 1-1 onto W
16 12 15 mpd φ W f f : 1 W 1-1 onto W
17 16 simprd φ f f : 1 W 1-1 onto W
18 excom x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f x f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
19 exancom x f : 1 W 1-1 onto W x = seq 1 + ˙ F f W x x = seq 1 + ˙ F f W f : 1 W 1-1 onto W
20 fvex seq 1 + ˙ F f W V
21 biidd x = seq 1 + ˙ F f W f : 1 W 1-1 onto W f : 1 W 1-1 onto W
22 20 21 ceqsexv x x = seq 1 + ˙ F f W f : 1 W 1-1 onto W f : 1 W 1-1 onto W
23 19 22 bitri x f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f : 1 W 1-1 onto W
24 23 exbii f x f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f f : 1 W 1-1 onto W
25 18 24 bitri x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f f : 1 W 1-1 onto W
26 17 25 sylibr φ x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
27 exdistrv f g f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g : 1 W 1-1 onto W y = seq 1 + ˙ F g W f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W
28 an4 f : 1 W 1-1 onto W g : 1 W 1-1 onto W x = seq 1 + ˙ F f W y = seq 1 + ˙ F g W f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g : 1 W 1-1 onto W y = seq 1 + ˙ F g W
29 5 adantr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W G Mnd
30 1 3 mndcl G Mnd x B y B x + ˙ y B
31 30 3expb G Mnd x B y B x + ˙ y B
32 29 31 sylan φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x B y B x + ˙ y B
33 8 adantr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W ran F Z ran F
34 33 sselda φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x ran F x Z ran F
35 34 adantrr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x ran F y ran F x Z ran F
36 simprr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x ran F y ran F y ran F
37 3 4 cntzi x Z ran F y ran F x + ˙ y = y + ˙ x
38 35 36 37 syl2anc φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x ran F y ran F x + ˙ y = y + ˙ x
39 1 3 mndass G Mnd x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
40 29 39 sylan φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
41 16 simpld φ W
42 41 adantr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W W
43 nnuz = 1
44 42 43 eleqtrdi φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W W 1
45 7 adantr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W F : A B
46 45 frnd φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W ran F B
47 simprr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g : 1 W 1-1 onto W
48 f1ocnv g : 1 W 1-1 onto W g -1 : W 1-1 onto 1 W
49 47 48 syl φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g -1 : W 1-1 onto 1 W
50 simprl φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W f : 1 W 1-1 onto W
51 f1oco g -1 : W 1-1 onto 1 W f : 1 W 1-1 onto W g -1 f : 1 W 1-1 onto 1 W
52 49 50 51 syl2anc φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g -1 f : 1 W 1-1 onto 1 W
53 f1of g : 1 W 1-1 onto W g : 1 W W
54 47 53 syl φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g : 1 W W
55 fvco3 g : 1 W W x 1 W F g x = F g x
56 54 55 sylan φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x 1 W F g x = F g x
57 45 ffnd φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W F Fn A
58 11 adantr φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W W A
59 54 58 fssd φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g : 1 W A
60 59 ffvelrnda φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x 1 W g x A
61 fnfvelrn F Fn A g x A F g x ran F
62 57 60 61 syl2an2r φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x 1 W F g x ran F
63 56 62 eqeltrd φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x 1 W F g x ran F
64 f1of f : 1 W 1-1 onto W f : 1 W W
65 50 64 syl φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W f : 1 W W
66 fvco3 f : 1 W W k 1 W g -1 f k = g -1 f k
67 65 66 sylan φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W g -1 f k = g -1 f k
68 67 fveq2d φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W g g -1 f k = g g -1 f k
69 65 ffvelrnda φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W f k W
70 f1ocnvfv2 g : 1 W 1-1 onto W f k W g g -1 f k = f k
71 47 69 70 syl2an2r φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W g g -1 f k = f k
72 68 71 eqtr2d φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W f k = g g -1 f k
73 72 fveq2d φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W F f k = F g g -1 f k
74 fvco3 f : 1 W W k 1 W F f k = F f k
75 65 74 sylan φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W F f k = F f k
76 f1of g -1 f : 1 W 1-1 onto 1 W g -1 f : 1 W 1 W
77 52 76 syl φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W g -1 f : 1 W 1 W
78 77 ffvelrnda φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W g -1 f k 1 W
79 fvco3 g : 1 W A g -1 f k 1 W F g g -1 f k = F g g -1 f k
80 59 78 79 syl2an2r φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W F g g -1 f k = F g g -1 f k
81 73 75 80 3eqtr4d φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W k 1 W F f k = F g g -1 f k
82 32 38 40 44 46 52 63 81 seqf1o φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W seq 1 + ˙ F f W = seq 1 + ˙ F g W
83 eqeq12 x = seq 1 + ˙ F f W y = seq 1 + ˙ F g W x = y seq 1 + ˙ F f W = seq 1 + ˙ F g W
84 82 83 syl5ibrcom φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x = seq 1 + ˙ F f W y = seq 1 + ˙ F g W x = y
85 84 expimpd φ f : 1 W 1-1 onto W g : 1 W 1-1 onto W x = seq 1 + ˙ F f W y = seq 1 + ˙ F g W x = y
86 28 85 syl5bir φ f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g : 1 W 1-1 onto W y = seq 1 + ˙ F g W x = y
87 86 exlimdvv φ f g f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g : 1 W 1-1 onto W y = seq 1 + ˙ F g W x = y
88 27 87 syl5bir φ f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W x = y
89 88 alrimivv φ x y f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W x = y
90 eqeq1 x = y x = seq 1 + ˙ F f W y = seq 1 + ˙ F f W
91 90 anbi2d x = y f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f : 1 W 1-1 onto W y = seq 1 + ˙ F f W
92 91 exbidv x = y f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W f f : 1 W 1-1 onto W y = seq 1 + ˙ F f W
93 f1oeq1 f = g f : 1 W 1-1 onto W g : 1 W 1-1 onto W
94 coeq2 f = g F f = F g
95 94 seqeq3d f = g seq 1 + ˙ F f = seq 1 + ˙ F g
96 95 fveq1d f = g seq 1 + ˙ F f W = seq 1 + ˙ F g W
97 96 eqeq2d f = g y = seq 1 + ˙ F f W y = seq 1 + ˙ F g W
98 93 97 anbi12d f = g f : 1 W 1-1 onto W y = seq 1 + ˙ F f W g : 1 W 1-1 onto W y = seq 1 + ˙ F g W
99 98 cbvexvw f f : 1 W 1-1 onto W y = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W
100 92 99 bitrdi x = y f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W
101 100 eu4 ∃! x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W x y f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W g g : 1 W 1-1 onto W y = seq 1 + ˙ F g W x = y
102 26 89 101 sylanbrc φ ∃! x f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W