Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval3.b |
|
2 |
|
gsumval3.0 |
|
3 |
|
gsumval3.p |
|
4 |
|
gsumval3.z |
|
5 |
|
gsumval3.g |
|
6 |
|
gsumval3.a |
|
7 |
|
gsumval3.f |
|
8 |
|
gsumval3.c |
|
9 |
|
gsumval3a.t |
|
10 |
|
gsumval3a.n |
|
11 |
|
gsumval3a.s |
|
12 |
10
|
neneqd |
|
13 |
|
fz1f1o |
|
14 |
9 13
|
syl |
|
15 |
14
|
ord |
|
16 |
12 15
|
mpd |
|
17 |
16
|
simprd |
|
18 |
|
excom |
|
19 |
|
exancom |
|
20 |
|
fvex |
|
21 |
|
biidd |
|
22 |
20 21
|
ceqsexv |
|
23 |
19 22
|
bitri |
|
24 |
23
|
exbii |
|
25 |
18 24
|
bitri |
|
26 |
17 25
|
sylibr |
|
27 |
|
exdistrv |
|
28 |
|
an4 |
|
29 |
5
|
adantr |
|
30 |
1 3
|
mndcl |
|
31 |
30
|
3expb |
|
32 |
29 31
|
sylan |
|
33 |
8
|
adantr |
|
34 |
33
|
sselda |
|
35 |
34
|
adantrr |
|
36 |
|
simprr |
|
37 |
3 4
|
cntzi |
|
38 |
35 36 37
|
syl2anc |
|
39 |
1 3
|
mndass |
|
40 |
29 39
|
sylan |
|
41 |
16
|
simpld |
|
42 |
41
|
adantr |
|
43 |
|
nnuz |
|
44 |
42 43
|
eleqtrdi |
|
45 |
7
|
adantr |
|
46 |
45
|
frnd |
|
47 |
|
simprr |
|
48 |
|
f1ocnv |
|
49 |
47 48
|
syl |
|
50 |
|
simprl |
|
51 |
|
f1oco |
|
52 |
49 50 51
|
syl2anc |
|
53 |
|
f1of |
|
54 |
47 53
|
syl |
|
55 |
|
fvco3 |
|
56 |
54 55
|
sylan |
|
57 |
45
|
ffnd |
|
58 |
11
|
adantr |
|
59 |
54 58
|
fssd |
|
60 |
59
|
ffvelrnda |
|
61 |
|
fnfvelrn |
|
62 |
57 60 61
|
syl2an2r |
|
63 |
56 62
|
eqeltrd |
|
64 |
|
f1of |
|
65 |
50 64
|
syl |
|
66 |
|
fvco3 |
|
67 |
65 66
|
sylan |
|
68 |
67
|
fveq2d |
|
69 |
65
|
ffvelrnda |
|
70 |
|
f1ocnvfv2 |
|
71 |
47 69 70
|
syl2an2r |
|
72 |
68 71
|
eqtr2d |
|
73 |
72
|
fveq2d |
|
74 |
|
fvco3 |
|
75 |
65 74
|
sylan |
|
76 |
|
f1of |
|
77 |
52 76
|
syl |
|
78 |
77
|
ffvelrnda |
|
79 |
|
fvco3 |
|
80 |
59 78 79
|
syl2an2r |
|
81 |
73 75 80
|
3eqtr4d |
|
82 |
32 38 40 44 46 52 63 81
|
seqf1o |
|
83 |
|
eqeq12 |
|
84 |
82 83
|
syl5ibrcom |
|
85 |
84
|
expimpd |
|
86 |
28 85
|
syl5bir |
|
87 |
86
|
exlimdvv |
|
88 |
27 87
|
syl5bir |
|
89 |
88
|
alrimivv |
|
90 |
|
eqeq1 |
|
91 |
90
|
anbi2d |
|
92 |
91
|
exbidv |
|
93 |
|
f1oeq1 |
|
94 |
|
coeq2 |
|
95 |
94
|
seqeq3d |
|
96 |
95
|
fveq1d |
|
97 |
96
|
eqeq2d |
|
98 |
93 97
|
anbi12d |
|
99 |
98
|
cbvexvw |
|
100 |
92 99
|
bitrdi |
|
101 |
100
|
eu4 |
|
102 |
26 89 101
|
sylanbrc |
|