Metamath Proof Explorer


Theorem gsumval3lem1

Description: Lemma 1 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3.m φ M
gsumval3.h φ H : 1 M 1-1 A
gsumval3.n φ F supp 0 ˙ ran H
gsumval3.w W = F H supp 0 ˙
Assertion gsumval3lem1 φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3.m φ M
10 gsumval3.h φ H : 1 M 1-1 A
11 gsumval3.n φ F supp 0 ˙ ran H
12 gsumval3.w W = F H supp 0 ˙
13 10 ad2antrr φ W ¬ A ran f Isom < , < 1 W W H : 1 M 1-1 A
14 suppssdm F H supp 0 ˙ dom F H
15 12 14 eqsstri W dom F H
16 f1f H : 1 M 1-1 A H : 1 M A
17 10 16 syl φ H : 1 M A
18 fco F : A B H : 1 M A F H : 1 M B
19 7 17 18 syl2anc φ F H : 1 M B
20 15 19 fssdm φ W 1 M
21 20 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W 1 M
22 f1ores H : 1 M 1-1 A W 1 M H W : W 1-1 onto H W
23 13 21 22 syl2anc φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W
24 12 imaeq2i H W = H F H supp 0 ˙
25 7 6 fexd φ F V
26 ovex 1 M V
27 fex H : 1 M A 1 M V H V
28 16 26 27 sylancl H : 1 M 1-1 A H V
29 10 28 syl φ H V
30 f1fun H : 1 M 1-1 A Fun H
31 10 30 syl φ Fun H
32 31 11 jca φ Fun H F supp 0 ˙ ran H
33 25 29 32 jca31 φ F V H V Fun H F supp 0 ˙ ran H
34 33 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F V H V Fun H F supp 0 ˙ ran H
35 imacosupp F V H V Fun H F supp 0 ˙ ran H H F H supp 0 ˙ = F supp 0 ˙
36 35 imp F V H V Fun H F supp 0 ˙ ran H H F H supp 0 ˙ = F supp 0 ˙
37 34 36 syl φ W ¬ A ran f Isom < , < 1 W W H F H supp 0 ˙ = F supp 0 ˙
38 24 37 eqtrid φ W ¬ A ran f Isom < , < 1 W W H W = F supp 0 ˙
39 38 f1oeq3d φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W H W : W 1-1 onto F supp 0 ˙
40 23 39 mpbid φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto F supp 0 ˙
41 isof1o f Isom < , < 1 W W f : 1 W 1-1 onto W
42 41 ad2antll φ W ¬ A ran f Isom < , < 1 W W f : 1 W 1-1 onto W
43 f1oco H W : W 1-1 onto F supp 0 ˙ f : 1 W 1-1 onto W H W f : 1 W 1-1 onto F supp 0 ˙
44 40 42 43 syl2anc φ W ¬ A ran f Isom < , < 1 W W H W f : 1 W 1-1 onto F supp 0 ˙
45 f1of f : 1 W 1-1 onto W f : 1 W W
46 frn f : 1 W W ran f W
47 42 45 46 3syl φ W ¬ A ran f Isom < , < 1 W W ran f W
48 cores ran f W H W f = H f
49 f1oeq1 H W f = H f H W f : 1 W 1-1 onto F supp 0 ˙ H f : 1 W 1-1 onto F supp 0 ˙
50 47 48 49 3syl φ W ¬ A ran f Isom < , < 1 W W H W f : 1 W 1-1 onto F supp 0 ˙ H f : 1 W 1-1 onto F supp 0 ˙
51 44 50 mpbid φ W ¬ A ran f Isom < , < 1 W W H f : 1 W 1-1 onto F supp 0 ˙
52 fzfi 1 M Fin
53 ssfi 1 M Fin W 1 M W Fin
54 52 20 53 sylancr φ W Fin
55 54 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W Fin
56 12 a1i φ W ¬ A ran f Isom < , < 1 W W W = F H supp 0 ˙
57 56 imaeq2d φ W ¬ A ran f Isom < , < 1 W W H W = H F H supp 0 ˙
58 52 a1i φ 1 M Fin
59 17 58 fexd φ H V
60 25 59 32 jca31 φ F V H V Fun H F supp 0 ˙ ran H
61 60 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F V H V Fun H F supp 0 ˙ ran H
62 61 36 syl φ W ¬ A ran f Isom < , < 1 W W H F H supp 0 ˙ = F supp 0 ˙
63 57 62 eqtrd φ W ¬ A ran f Isom < , < 1 W W H W = F supp 0 ˙
64 63 f1oeq3d φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W H W : W 1-1 onto F supp 0 ˙
65 23 64 mpbid φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto F supp 0 ˙
66 55 65 hasheqf1od φ W ¬ A ran f Isom < , < 1 W W W = F supp 0 ˙
67 66 oveq2d φ W ¬ A ran f Isom < , < 1 W W 1 W = 1 F supp 0 ˙
68 67 f1oeq2d φ W ¬ A ran f Isom < , < 1 W W H f : 1 W 1-1 onto F supp 0 ˙ H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙
69 51 68 mpbid φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙