Metamath Proof Explorer


Theorem gsumval3lem2

Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3.m φ M
gsumval3.h φ H : 1 M 1-1 A
gsumval3.n φ F supp 0 ˙ ran H
gsumval3.w W = F H supp 0 ˙
Assertion gsumval3lem2 φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3.m φ M
10 gsumval3.h φ H : 1 M 1-1 A
11 gsumval3.n φ F supp 0 ˙ ran H
12 gsumval3.w W = F H supp 0 ˙
13 f1f H : 1 M 1-1 A H : 1 M A
14 10 13 syl φ H : 1 M A
15 fzfid φ 1 M Fin
16 14 15 fexd φ H V
17 vex f V
18 coexg H V f V H f V
19 16 17 18 sylancl φ H f V
20 19 ad2antrr φ W ¬ A ran f Isom < , < 1 W W H f V
21 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem1 φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙
22 fzfi 1 M Fin
23 suppssdm F H supp 0 ˙ dom F H
24 12 23 eqsstri W dom F H
25 7 14 fcod φ F H : 1 M B
26 24 25 fssdm φ W 1 M
27 ssfi 1 M Fin W 1 M W Fin
28 22 26 27 sylancr φ W Fin
29 28 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W Fin
30 10 ad2antrr φ W ¬ A ran f Isom < , < 1 W W H : 1 M 1-1 A
31 26 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W 1 M
32 f1ores H : 1 M 1-1 A W 1 M H W : W 1-1 onto H W
33 30 31 32 syl2anc φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W
34 12 imaeq2i H W = H F H supp 0 ˙
35 7 6 fexd φ F V
36 ovex 1 M V
37 fex H : 1 M A 1 M V H V
38 14 36 37 sylancl φ H V
39 35 38 jca φ F V H V
40 f1fun H : 1 M 1-1 A Fun H
41 10 40 syl φ Fun H
42 41 11 jca φ Fun H F supp 0 ˙ ran H
43 imacosupp F V H V Fun H F supp 0 ˙ ran H H F H supp 0 ˙ = F supp 0 ˙
44 39 42 43 sylc φ H F H supp 0 ˙ = F supp 0 ˙
45 44 adantr φ W H F H supp 0 ˙ = F supp 0 ˙
46 34 45 eqtrid φ W H W = F supp 0 ˙
47 46 adantr φ W ¬ A ran f Isom < , < 1 W W H W = F supp 0 ˙
48 47 f1oeq3d φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W H W : W 1-1 onto F supp 0 ˙
49 33 48 mpbid φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto F supp 0 ˙
50 29 49 hasheqf1od φ W ¬ A ran f Isom < , < 1 W W W = F supp 0 ˙
51 50 fveq2d φ W ¬ A ran f Isom < , < 1 W W seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
52 21 51 jca φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
53 f1oeq1 g = H f g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙
54 coeq2 g = H f F g = F H f
55 54 seqeq3d g = H f seq 1 + ˙ F g = seq 1 + ˙ F H f
56 55 fveq1d g = H f seq 1 + ˙ F g F supp 0 ˙ = seq 1 + ˙ F H f F supp 0 ˙
57 56 eqeq2d g = H f seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
58 53 57 anbi12d g = H f g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
59 20 52 58 spcedv φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
60 5 ad2antrr φ W ¬ A ran f Isom < , < 1 W W G Mnd
61 6 ad2antrr φ W ¬ A ran f Isom < , < 1 W W A V
62 7 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F : A B
63 8 ad2antrr φ W ¬ A ran f Isom < , < 1 W W ran F Z ran F
64 f1f1orn H : 1 M 1-1 A H : 1 M 1-1 onto ran H
65 10 64 syl φ H : 1 M 1-1 onto ran H
66 f1oen3g H V H : 1 M 1-1 onto ran H 1 M ran H
67 16 65 66 syl2anc φ 1 M ran H
68 enfi 1 M ran H 1 M Fin ran H Fin
69 67 68 syl φ 1 M Fin ran H Fin
70 22 69 mpbii φ ran H Fin
71 70 11 ssfid φ F supp 0 ˙ Fin
72 71 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ Fin
73 12 neeq1i W F H supp 0 ˙
74 supp0cosupp0 F V H V F supp 0 ˙ = F H supp 0 ˙ =
75 74 necon3d F V H V F H supp 0 ˙ F supp 0 ˙
76 35 38 75 syl2anc φ F H supp 0 ˙ F supp 0 ˙
77 73 76 syl5bi φ W F supp 0 ˙
78 77 imp φ W F supp 0 ˙
79 78 adantr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙
80 11 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ ran H
81 14 frnd φ ran H A
82 81 ad2antrr φ W ¬ A ran f Isom < , < 1 W W ran H A
83 80 82 sstrd φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ A
84 1 2 3 4 60 61 62 63 72 79 83 gsumval3eu φ W ¬ A ran f Isom < , < 1 W W ∃! x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙
85 iota1 ∃! x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
86 84 85 syl φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
87 eqid F supp 0 ˙ = F supp 0 ˙
88 simprl φ W ¬ A ran f Isom < , < 1 W W ¬ A ran
89 1 2 3 4 60 61 62 63 72 79 87 88 gsumval3a φ W ¬ A ran f Isom < , < 1 W W G F = ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙
90 89 eqeq1d φ W ¬ A ran f Isom < , < 1 W W G F = x ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
91 86 90 bitr4d φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x
92 91 alrimiv φ W ¬ A ran f Isom < , < 1 W W x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x
93 fvex seq 1 + ˙ F H f W V
94 eqeq1 x = seq 1 + ˙ F H f W x = seq 1 + ˙ F g F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
95 94 anbi2d x = seq 1 + ˙ F H f W g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
96 95 exbidv x = seq 1 + ˙ F H f W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
97 eqeq2 x = seq 1 + ˙ F H f W G F = x G F = seq 1 + ˙ F H f W
98 96 97 bibi12d x = seq 1 + ˙ F H f W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
99 93 98 spcv x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
100 92 99 syl φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
101 59 100 mpbid φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W