| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|
| 2 |
|
gsumval3.0 |
|
| 3 |
|
gsumval3.p |
|
| 4 |
|
gsumval3.z |
|
| 5 |
|
gsumval3.g |
|
| 6 |
|
gsumval3.a |
|
| 7 |
|
gsumval3.f |
|
| 8 |
|
gsumval3.c |
|
| 9 |
|
gsumval3.m |
|
| 10 |
|
gsumval3.h |
|
| 11 |
|
gsumval3.n |
|
| 12 |
|
gsumval3.w |
|
| 13 |
|
f1f |
|
| 14 |
10 13
|
syl |
|
| 15 |
|
fzfid |
|
| 16 |
14 15
|
fexd |
|
| 17 |
|
vex |
|
| 18 |
|
coexg |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem1 |
|
| 22 |
|
fzfi |
|
| 23 |
|
suppssdm |
|
| 24 |
12 23
|
eqsstri |
|
| 25 |
7 14
|
fcod |
|
| 26 |
24 25
|
fssdm |
|
| 27 |
|
ssfi |
|
| 28 |
22 26 27
|
sylancr |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
10
|
ad2antrr |
|
| 31 |
26
|
ad2antrr |
|
| 32 |
|
f1ores |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
12
|
imaeq2i |
|
| 35 |
7 6
|
fexd |
|
| 36 |
|
ovex |
|
| 37 |
|
fex |
|
| 38 |
14 36 37
|
sylancl |
|
| 39 |
35 38
|
jca |
|
| 40 |
|
f1fun |
|
| 41 |
10 40
|
syl |
|
| 42 |
41 11
|
jca |
|
| 43 |
|
imacosupp |
|
| 44 |
39 42 43
|
sylc |
|
| 45 |
44
|
adantr |
|
| 46 |
34 45
|
eqtrid |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
f1oeq3d |
|
| 49 |
33 48
|
mpbid |
|
| 50 |
29 49
|
hasheqf1od |
|
| 51 |
50
|
fveq2d |
|
| 52 |
21 51
|
jca |
|
| 53 |
|
f1oeq1 |
|
| 54 |
|
coeq2 |
|
| 55 |
54
|
seqeq3d |
|
| 56 |
55
|
fveq1d |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
53 57
|
anbi12d |
|
| 59 |
20 52 58
|
spcedv |
|
| 60 |
5
|
ad2antrr |
|
| 61 |
6
|
ad2antrr |
|
| 62 |
7
|
ad2antrr |
|
| 63 |
8
|
ad2antrr |
|
| 64 |
|
f1f1orn |
|
| 65 |
10 64
|
syl |
|
| 66 |
|
f1oen3g |
|
| 67 |
16 65 66
|
syl2anc |
|
| 68 |
|
enfi |
|
| 69 |
67 68
|
syl |
|
| 70 |
22 69
|
mpbii |
|
| 71 |
70 11
|
ssfid |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
12
|
neeq1i |
|
| 74 |
|
supp0cosupp0 |
|
| 75 |
74
|
necon3d |
|
| 76 |
35 38 75
|
syl2anc |
|
| 77 |
73 76
|
biimtrid |
|
| 78 |
77
|
imp |
|
| 79 |
78
|
adantr |
|
| 80 |
11
|
ad2antrr |
|
| 81 |
14
|
frnd |
|
| 82 |
81
|
ad2antrr |
|
| 83 |
80 82
|
sstrd |
|
| 84 |
1 2 3 4 60 61 62 63 72 79 83
|
gsumval3eu |
|
| 85 |
|
iota1 |
|
| 86 |
84 85
|
syl |
|
| 87 |
|
eqid |
|
| 88 |
|
simprl |
|
| 89 |
1 2 3 4 60 61 62 63 72 79 87 88
|
gsumval3a |
|
| 90 |
89
|
eqeq1d |
|
| 91 |
86 90
|
bitr4d |
|
| 92 |
91
|
alrimiv |
|
| 93 |
|
fvex |
|
| 94 |
|
eqeq1 |
|
| 95 |
94
|
anbi2d |
|
| 96 |
95
|
exbidv |
|
| 97 |
|
eqeq2 |
|
| 98 |
96 97
|
bibi12d |
|
| 99 |
93 98
|
spcv |
|
| 100 |
92 99
|
syl |
|
| 101 |
59 100
|
mpbid |
|