Metamath Proof Explorer


Theorem gsumwmhm

Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Hypothesis gsumwmhm.b B = Base M
Assertion gsumwmhm H M MndHom N W Word B H M W = N H W

Proof

Step Hyp Ref Expression
1 gsumwmhm.b B = Base M
2 oveq2 W = M W = M
3 eqid 0 M = 0 M
4 3 gsum0 M = 0 M
5 2 4 eqtrdi W = M W = 0 M
6 5 fveq2d W = H M W = H 0 M
7 coeq2 W = H W = H
8 co02 H =
9 7 8 eqtrdi W = H W =
10 9 oveq2d W = N H W = N
11 eqid 0 N = 0 N
12 11 gsum0 N = 0 N
13 10 12 eqtrdi W = N H W = 0 N
14 6 13 eqeq12d W = H M W = N H W H 0 M = 0 N
15 mhmrcl1 H M MndHom N M Mnd
16 15 ad2antrr H M MndHom N W Word B W M Mnd
17 eqid + M = + M
18 1 17 mndcl M Mnd x B y B x + M y B
19 18 3expb M Mnd x B y B x + M y B
20 16 19 sylan H M MndHom N W Word B W x B y B x + M y B
21 wrdf W Word B W : 0 ..^ W B
22 21 ad2antlr H M MndHom N W Word B W W : 0 ..^ W B
23 wrdfin W Word B W Fin
24 23 adantl H M MndHom N W Word B W Fin
25 hashnncl W Fin W W
26 24 25 syl H M MndHom N W Word B W W
27 26 biimpar H M MndHom N W Word B W W
28 27 nnzd H M MndHom N W Word B W W
29 fzoval W 0 ..^ W = 0 W 1
30 28 29 syl H M MndHom N W Word B W 0 ..^ W = 0 W 1
31 30 feq2d H M MndHom N W Word B W W : 0 ..^ W B W : 0 W 1 B
32 22 31 mpbid H M MndHom N W Word B W W : 0 W 1 B
33 32 ffvelrnda H M MndHom N W Word B W x 0 W 1 W x B
34 nnm1nn0 W W 1 0
35 27 34 syl H M MndHom N W Word B W W 1 0
36 nn0uz 0 = 0
37 35 36 eleqtrdi H M MndHom N W Word B W W 1 0
38 eqid + N = + N
39 1 17 38 mhmlin H M MndHom N x B y B H x + M y = H x + N H y
40 39 3expb H M MndHom N x B y B H x + M y = H x + N H y
41 40 ad4ant14 H M MndHom N W Word B W x B y B H x + M y = H x + N H y
42 32 ffnd H M MndHom N W Word B W W Fn 0 W 1
43 fvco2 W Fn 0 W 1 x 0 W 1 H W x = H W x
44 42 43 sylan H M MndHom N W Word B W x 0 W 1 H W x = H W x
45 44 eqcomd H M MndHom N W Word B W x 0 W 1 H W x = H W x
46 20 33 37 41 45 seqhomo H M MndHom N W Word B W H seq 0 + M W W 1 = seq 0 + N H W W 1
47 1 17 16 37 32 gsumval2 H M MndHom N W Word B W M W = seq 0 + M W W 1
48 47 fveq2d H M MndHom N W Word B W H M W = H seq 0 + M W W 1
49 eqid Base N = Base N
50 mhmrcl2 H M MndHom N N Mnd
51 50 ad2antrr H M MndHom N W Word B W N Mnd
52 1 49 mhmf H M MndHom N H : B Base N
53 52 ad2antrr H M MndHom N W Word B W H : B Base N
54 fco H : B Base N W : 0 W 1 B H W : 0 W 1 Base N
55 53 32 54 syl2anc H M MndHom N W Word B W H W : 0 W 1 Base N
56 49 38 51 37 55 gsumval2 H M MndHom N W Word B W N H W = seq 0 + N H W W 1
57 46 48 56 3eqtr4d H M MndHom N W Word B W H M W = N H W
58 3 11 mhm0 H M MndHom N H 0 M = 0 N
59 58 adantr H M MndHom N W Word B H 0 M = 0 N
60 14 57 59 pm2.61ne H M MndHom N W Word B H M W = N H W