Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwmhm.b |
|
2 |
|
oveq2 |
|
3 |
|
eqid |
|
4 |
3
|
gsum0 |
|
5 |
2 4
|
eqtrdi |
|
6 |
5
|
fveq2d |
|
7 |
|
coeq2 |
|
8 |
|
co02 |
|
9 |
7 8
|
eqtrdi |
|
10 |
9
|
oveq2d |
|
11 |
|
eqid |
|
12 |
11
|
gsum0 |
|
13 |
10 12
|
eqtrdi |
|
14 |
6 13
|
eqeq12d |
|
15 |
|
mhmrcl1 |
|
16 |
15
|
ad2antrr |
|
17 |
|
eqid |
|
18 |
1 17
|
mndcl |
|
19 |
18
|
3expb |
|
20 |
16 19
|
sylan |
|
21 |
|
wrdf |
|
22 |
21
|
ad2antlr |
|
23 |
|
wrdfin |
|
24 |
23
|
adantl |
|
25 |
|
hashnncl |
|
26 |
24 25
|
syl |
|
27 |
26
|
biimpar |
|
28 |
27
|
nnzd |
|
29 |
|
fzoval |
|
30 |
28 29
|
syl |
|
31 |
30
|
feq2d |
|
32 |
22 31
|
mpbid |
|
33 |
32
|
ffvelrnda |
|
34 |
|
nnm1nn0 |
|
35 |
27 34
|
syl |
|
36 |
|
nn0uz |
|
37 |
35 36
|
eleqtrdi |
|
38 |
|
eqid |
|
39 |
1 17 38
|
mhmlin |
|
40 |
39
|
3expb |
|
41 |
40
|
ad4ant14 |
|
42 |
32
|
ffnd |
|
43 |
|
fvco2 |
|
44 |
42 43
|
sylan |
|
45 |
44
|
eqcomd |
|
46 |
20 33 37 41 45
|
seqhomo |
|
47 |
1 17 16 37 32
|
gsumval2 |
|
48 |
47
|
fveq2d |
|
49 |
|
eqid |
|
50 |
|
mhmrcl2 |
|
51 |
50
|
ad2antrr |
|
52 |
1 49
|
mhmf |
|
53 |
52
|
ad2antrr |
|
54 |
|
fco |
|
55 |
53 32 54
|
syl2anc |
|
56 |
49 38 51 37 55
|
gsumval2 |
|
57 |
46 48 56
|
3eqtr4d |
|
58 |
3 11
|
mhm0 |
|
59 |
58
|
adantr |
|
60 |
14 57 59
|
pm2.61ne |
|