| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumwrev.b |
|
| 2 |
|
gsumwrev.o |
|
| 3 |
|
oveq2 |
|
| 4 |
|
fveq2 |
|
| 5 |
|
rev0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
6
|
oveq2d |
|
| 8 |
3 7
|
eqeq12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12
|
eqeq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
oveq2 |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
15 17
|
eqeq12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
oveq2 |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
eqid |
|
| 26 |
2 25
|
oppgid |
|
| 27 |
26
|
gsum0 |
|
| 28 |
25
|
gsum0 |
|
| 29 |
27 28
|
eqtr4i |
|
| 30 |
29
|
a1i |
|
| 31 |
|
oveq2 |
|
| 32 |
2
|
oppgmnd |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simprl |
|
| 35 |
|
simprr |
|
| 36 |
35
|
s1cld |
|
| 37 |
2 1
|
oppgbas |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
gsumccat |
|
| 40 |
33 34 36 39
|
syl3anc |
|
| 41 |
37
|
gsumws1 |
|
| 42 |
41
|
ad2antll |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
eqid |
|
| 45 |
44 2 38
|
oppgplus |
|
| 46 |
43 45
|
eqtrdi |
|
| 47 |
40 46
|
eqtrd |
|
| 48 |
|
revccat |
|
| 49 |
34 36 48
|
syl2anc |
|
| 50 |
|
revs1 |
|
| 51 |
50
|
oveq1i |
|
| 52 |
49 51
|
eqtrdi |
|
| 53 |
52
|
oveq2d |
|
| 54 |
|
simpl |
|
| 55 |
|
revcl |
|
| 56 |
55
|
ad2antrl |
|
| 57 |
1 44
|
gsumccat |
|
| 58 |
54 36 56 57
|
syl3anc |
|
| 59 |
1
|
gsumws1 |
|
| 60 |
59
|
ad2antll |
|
| 61 |
60
|
oveq1d |
|
| 62 |
53 58 61
|
3eqtrd |
|
| 63 |
47 62
|
eqeq12d |
|
| 64 |
31 63
|
imbitrrid |
|
| 65 |
64
|
expcom |
|
| 66 |
65
|
a2d |
|
| 67 |
9 14 19 24 30 66
|
wrdind |
|
| 68 |
67
|
impcom |
|