Metamath Proof Explorer


Theorem gsumws1

Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis gsumwcl.b B = Base G
Assertion gsumws1 S B G ⟨“ S ”⟩ = S

Proof

Step Hyp Ref Expression
1 gsumwcl.b B = Base G
2 s1val S B ⟨“ S ”⟩ = 0 S
3 2 oveq2d S B G ⟨“ S ”⟩ = G 0 S
4 eqid + G = + G
5 elfvdm S Base G G dom Base
6 5 1 eleq2s S B G dom Base
7 0nn0 0 0
8 nn0uz 0 = 0
9 7 8 eleqtri 0 0
10 9 a1i S B 0 0
11 0z 0
12 f1osng 0 S B 0 S : 0 1-1 onto S
13 11 12 mpan S B 0 S : 0 1-1 onto S
14 f1of 0 S : 0 1-1 onto S 0 S : 0 S
15 13 14 syl S B 0 S : 0 S
16 snssi S B S B
17 15 16 fssd S B 0 S : 0 B
18 fz0sn 0 0 = 0
19 18 feq2i 0 S : 0 0 B 0 S : 0 B
20 17 19 sylibr S B 0 S : 0 0 B
21 1 4 6 10 20 gsumval2 S B G 0 S = seq 0 + G 0 S 0
22 fvsng 0 S B 0 S 0 = S
23 11 22 mpan S B 0 S 0 = S
24 11 23 seq1i S B seq 0 + G 0 S 0 = S
25 3 21 24 3eqtrd S B G ⟨“ S ”⟩ = S