| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumwspan.b |  | 
						
							| 2 |  | gsumwspan.k |  | 
						
							| 3 | 1 | submacs |  | 
						
							| 4 | 3 | acsmred |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 6 | s1cld |  | 
						
							| 8 |  | ssel2 |  | 
						
							| 9 | 8 | adantll |  | 
						
							| 10 | 1 | gsumws1 |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 11 | eqcomd |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | rspceeqv |  | 
						
							| 15 | 7 12 14 | syl2anc |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 16 | elrnmpt |  | 
						
							| 18 | 17 | elv |  | 
						
							| 19 | 15 18 | sylibr |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 | 20 | ssrdv |  | 
						
							| 22 | 2 | mrccl |  | 
						
							| 23 | 4 22 | sylan |  | 
						
							| 24 | 2 | mrcssid |  | 
						
							| 25 | 4 24 | sylan |  | 
						
							| 26 |  | sswrd |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | sselda |  | 
						
							| 29 |  | gsumwsubmcl |  | 
						
							| 30 | 23 28 29 | syl2an2r |  | 
						
							| 31 | 30 | fmpttd |  | 
						
							| 32 | 31 | frnd |  | 
						
							| 33 | 4 2 | mrcssvd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 32 34 | sstrd |  | 
						
							| 36 |  | wrd0 |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | gsum0 |  | 
						
							| 39 | 38 | eqcomi |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 |  | oveq2 |  | 
						
							| 42 | 41 | rspceeqv |  | 
						
							| 43 | 36 40 42 | sylancr |  | 
						
							| 44 |  | fvex |  | 
						
							| 45 | 16 | elrnmpt |  | 
						
							| 46 | 44 45 | ax-mp |  | 
						
							| 47 | 43 46 | sylibr |  | 
						
							| 48 |  | ccatcl |  | 
						
							| 49 |  | simpll |  | 
						
							| 50 |  | sswrd |  | 
						
							| 51 | 50 | ad2antlr |  | 
						
							| 52 |  | simprl |  | 
						
							| 53 | 51 52 | sseldd |  | 
						
							| 54 |  | simprr |  | 
						
							| 55 | 51 54 | sseldd |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 1 56 | gsumccat |  | 
						
							| 58 | 49 53 55 57 | syl3anc |  | 
						
							| 59 | 58 | eqcomd |  | 
						
							| 60 |  | oveq2 |  | 
						
							| 61 | 60 | rspceeqv |  | 
						
							| 62 | 48 59 61 | syl2an2 |  | 
						
							| 63 |  | ovex |  | 
						
							| 64 | 16 | elrnmpt |  | 
						
							| 65 | 63 64 | ax-mp |  | 
						
							| 66 | 62 65 | sylibr |  | 
						
							| 67 | 66 | ralrimivva |  | 
						
							| 68 |  | oveq2 |  | 
						
							| 69 | 68 | cbvmptv |  | 
						
							| 70 | 69 | rneqi |  | 
						
							| 71 | 70 | raleqi |  | 
						
							| 72 |  | oveq2 |  | 
						
							| 73 | 72 | cbvmptv |  | 
						
							| 74 | 73 | rneqi |  | 
						
							| 75 | 74 | raleqi |  | 
						
							| 76 |  | eqid |  | 
						
							| 77 |  | oveq2 |  | 
						
							| 78 | 77 | eleq1d |  | 
						
							| 79 | 76 78 | ralrnmptw |  | 
						
							| 80 |  | ovexd |  | 
						
							| 81 | 79 80 | mprg |  | 
						
							| 82 | 75 81 | bitri |  | 
						
							| 83 | 82 | ralbii |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 |  | oveq1 |  | 
						
							| 86 | 85 | eleq1d |  | 
						
							| 87 | 86 | ralbidv |  | 
						
							| 88 | 84 87 | ralrnmptw |  | 
						
							| 89 |  | ovexd |  | 
						
							| 90 | 88 89 | mprg |  | 
						
							| 91 | 71 83 90 | 3bitri |  | 
						
							| 92 | 67 91 | sylibr |  | 
						
							| 93 | 1 37 56 | issubm |  | 
						
							| 94 | 93 | adantr |  | 
						
							| 95 | 35 47 92 94 | mpbir3and |  | 
						
							| 96 | 2 | mrcsscl |  | 
						
							| 97 | 5 21 95 96 | syl3anc |  | 
						
							| 98 | 97 32 | eqssd |  |