| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumwspan.b |
|
| 2 |
|
gsumwspan.k |
|
| 3 |
1
|
submacs |
|
| 4 |
3
|
acsmred |
|
| 5 |
4
|
adantr |
|
| 6 |
|
simpr |
|
| 7 |
6
|
s1cld |
|
| 8 |
|
ssel2 |
|
| 9 |
8
|
adantll |
|
| 10 |
1
|
gsumws1 |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
eqcomd |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
rspceeqv |
|
| 15 |
7 12 14
|
syl2anc |
|
| 16 |
|
eqid |
|
| 17 |
16
|
elrnmpt |
|
| 18 |
17
|
elv |
|
| 19 |
15 18
|
sylibr |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
ssrdv |
|
| 22 |
2
|
mrccl |
|
| 23 |
4 22
|
sylan |
|
| 24 |
2
|
mrcssid |
|
| 25 |
4 24
|
sylan |
|
| 26 |
|
sswrd |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
sselda |
|
| 29 |
|
gsumwsubmcl |
|
| 30 |
23 28 29
|
syl2an2r |
|
| 31 |
30
|
fmpttd |
|
| 32 |
31
|
frnd |
|
| 33 |
4 2
|
mrcssvd |
|
| 34 |
33
|
adantr |
|
| 35 |
32 34
|
sstrd |
|
| 36 |
|
wrd0 |
|
| 37 |
|
eqid |
|
| 38 |
37
|
gsum0 |
|
| 39 |
38
|
eqcomi |
|
| 40 |
39
|
a1i |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
rspceeqv |
|
| 43 |
36 40 42
|
sylancr |
|
| 44 |
|
fvex |
|
| 45 |
16
|
elrnmpt |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
43 46
|
sylibr |
|
| 48 |
|
ccatcl |
|
| 49 |
|
simpll |
|
| 50 |
|
sswrd |
|
| 51 |
50
|
ad2antlr |
|
| 52 |
|
simprl |
|
| 53 |
51 52
|
sseldd |
|
| 54 |
|
simprr |
|
| 55 |
51 54
|
sseldd |
|
| 56 |
|
eqid |
|
| 57 |
1 56
|
gsumccat |
|
| 58 |
49 53 55 57
|
syl3anc |
|
| 59 |
58
|
eqcomd |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
rspceeqv |
|
| 62 |
48 59 61
|
syl2an2 |
|
| 63 |
|
ovex |
|
| 64 |
16
|
elrnmpt |
|
| 65 |
63 64
|
ax-mp |
|
| 66 |
62 65
|
sylibr |
|
| 67 |
66
|
ralrimivva |
|
| 68 |
|
oveq2 |
|
| 69 |
68
|
cbvmptv |
|
| 70 |
69
|
rneqi |
|
| 71 |
70
|
raleqi |
|
| 72 |
|
oveq2 |
|
| 73 |
72
|
cbvmptv |
|
| 74 |
73
|
rneqi |
|
| 75 |
74
|
raleqi |
|
| 76 |
|
eqid |
|
| 77 |
|
oveq2 |
|
| 78 |
77
|
eleq1d |
|
| 79 |
76 78
|
ralrnmptw |
|
| 80 |
|
ovexd |
|
| 81 |
79 80
|
mprg |
|
| 82 |
75 81
|
bitri |
|
| 83 |
82
|
ralbii |
|
| 84 |
|
eqid |
|
| 85 |
|
oveq1 |
|
| 86 |
85
|
eleq1d |
|
| 87 |
86
|
ralbidv |
|
| 88 |
84 87
|
ralrnmptw |
|
| 89 |
|
ovexd |
|
| 90 |
88 89
|
mprg |
|
| 91 |
71 83 90
|
3bitri |
|
| 92 |
67 91
|
sylibr |
|
| 93 |
1 37 56
|
issubm |
|
| 94 |
93
|
adantr |
|
| 95 |
35 47 92 94
|
mpbir3and |
|
| 96 |
2
|
mrcsscl |
|
| 97 |
5 21 95 96
|
syl3anc |
|
| 98 |
97 32
|
eqssd |
|