| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
gsum0 |
|
| 4 |
1 3
|
eqtrdi |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
submrcl |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
lennncl |
|
| 11 |
10
|
adantll |
|
| 12 |
|
nnm1nn0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
nn0uz |
|
| 15 |
13 14
|
eleqtrdi |
|
| 16 |
|
wrdf |
|
| 17 |
16
|
ad2antlr |
|
| 18 |
11
|
nnzd |
|
| 19 |
|
fzoval |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
feq2d |
|
| 22 |
17 21
|
mpbid |
|
| 23 |
6
|
submss |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
22 24
|
fssd |
|
| 26 |
6 7 9 15 25
|
gsumval2 |
|
| 27 |
22
|
ffvelcdmda |
|
| 28 |
7
|
submcl |
|
| 29 |
28
|
3expb |
|
| 30 |
29
|
ad4ant14 |
|
| 31 |
15 27 30
|
seqcl |
|
| 32 |
26 31
|
eqeltrd |
|
| 33 |
2
|
subm0cl |
|
| 34 |
33
|
adantr |
|
| 35 |
5 32 34
|
pm2.61ne |
|