Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
eqid |
|
3 |
2
|
gsum0 |
|
4 |
1 3
|
eqtrdi |
|
5 |
4
|
eleq1d |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
submrcl |
|
9 |
8
|
ad2antrr |
|
10 |
|
lennncl |
|
11 |
10
|
adantll |
|
12 |
|
nnm1nn0 |
|
13 |
11 12
|
syl |
|
14 |
|
nn0uz |
|
15 |
13 14
|
eleqtrdi |
|
16 |
|
wrdf |
|
17 |
16
|
ad2antlr |
|
18 |
11
|
nnzd |
|
19 |
|
fzoval |
|
20 |
18 19
|
syl |
|
21 |
20
|
feq2d |
|
22 |
17 21
|
mpbid |
|
23 |
6
|
submss |
|
24 |
23
|
ad2antrr |
|
25 |
22 24
|
fssd |
|
26 |
6 7 9 15 25
|
gsumval2 |
|
27 |
22
|
ffvelrnda |
|
28 |
7
|
submcl |
|
29 |
28
|
3expb |
|
30 |
29
|
ad4ant14 |
|
31 |
15 27 30
|
seqcl |
|
32 |
26 31
|
eqeltrd |
|
33 |
2
|
subm0cl |
|
34 |
33
|
adantr |
|
35 |
5 32 34
|
pm2.61ne |
|