Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Iterated sums in a monoid
gsumz
Next ⟩
gsumwsubmcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumz
Description:
Value of a group sum over the zero element.
(Contributed by
Mario Carneiro
, 7-Dec-2014)
Ref
Expression
Hypothesis
gsumz.z
⊢
0
˙
=
0
G
Assertion
gsumz
⊢
G
∈
Mnd
∧
A
∈
V
→
∑
G
k
∈
A
0
˙
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
gsumz.z
⊢
0
˙
=
0
G
2
eqid
⊢
Base
G
=
Base
G
3
eqid
⊢
+
G
=
+
G
4
eqid
⊢
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
=
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
5
simpl
⊢
G
∈
Mnd
∧
A
∈
V
→
G
∈
Mnd
6
simpr
⊢
G
∈
Mnd
∧
A
∈
V
→
A
∈
V
7
1
fvexi
⊢
0
˙
∈
V
8
7
snid
⊢
0
˙
∈
0
˙
9
2
1
3
4
gsumvallem2
⊢
G
∈
Mnd
→
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
=
0
˙
10
8
9
eleqtrrid
⊢
G
∈
Mnd
→
0
˙
∈
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
11
10
ad2antrr
⊢
G
∈
Mnd
∧
A
∈
V
∧
k
∈
A
→
0
˙
∈
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
12
11
fmpttd
⊢
G
∈
Mnd
∧
A
∈
V
→
k
∈
A
⟼
0
˙
:
A
⟶
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
13
2
1
3
4
5
6
12
gsumval1
⊢
G
∈
Mnd
∧
A
∈
V
→
∑
G
k
∈
A
0
˙
=
0
˙