| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzadd.b |
|
| 2 |
|
gsumzadd.0 |
|
| 3 |
|
gsumzadd.p |
|
| 4 |
|
gsumzadd.z |
|
| 5 |
|
gsumzadd.g |
|
| 6 |
|
gsumzadd.a |
|
| 7 |
|
gsumzadd.fn |
|
| 8 |
|
gsumzadd.hn |
|
| 9 |
|
gsumzadd.s |
|
| 10 |
|
gsumzadd.c |
|
| 11 |
|
gsumzadd.f |
|
| 12 |
|
gsumzadd.h |
|
| 13 |
|
eqid |
|
| 14 |
1
|
submss |
|
| 15 |
9 14
|
syl |
|
| 16 |
11 15
|
fssd |
|
| 17 |
12 15
|
fssd |
|
| 18 |
11
|
frnd |
|
| 19 |
4
|
cntzidss |
|
| 20 |
10 18 19
|
syl2anc |
|
| 21 |
12
|
frnd |
|
| 22 |
4
|
cntzidss |
|
| 23 |
10 21 22
|
syl2anc |
|
| 24 |
3
|
submcl |
|
| 25 |
24
|
3expb |
|
| 26 |
9 25
|
sylan |
|
| 27 |
|
inidm |
|
| 28 |
26 11 12 6 6 27
|
off |
|
| 29 |
28
|
frnd |
|
| 30 |
4
|
cntzidss |
|
| 31 |
10 29 30
|
syl2anc |
|
| 32 |
10
|
adantr |
|
| 33 |
15
|
adantr |
|
| 34 |
5
|
adantr |
|
| 35 |
|
vex |
|
| 36 |
35
|
a1i |
|
| 37 |
9
|
adantr |
|
| 38 |
|
simpl |
|
| 39 |
|
fssres |
|
| 40 |
12 38 39
|
syl2an |
|
| 41 |
23
|
adantr |
|
| 42 |
|
resss |
|
| 43 |
42
|
rnssi |
|
| 44 |
4
|
cntzidss |
|
| 45 |
41 43 44
|
sylancl |
|
| 46 |
12
|
ffund |
|
| 47 |
46
|
funresd |
|
| 48 |
47
|
adantr |
|
| 49 |
8
|
fsuppimpd |
|
| 50 |
49
|
adantr |
|
| 51 |
12 6
|
fexd |
|
| 52 |
2
|
fvexi |
|
| 53 |
|
ressuppss |
|
| 54 |
51 52 53
|
sylancl |
|
| 55 |
54
|
adantr |
|
| 56 |
50 55
|
ssfid |
|
| 57 |
|
resfunexg |
|
| 58 |
46 35 57
|
sylancl |
|
| 59 |
|
isfsupp |
|
| 60 |
58 52 59
|
sylancl |
|
| 61 |
60
|
adantr |
|
| 62 |
48 56 61
|
mpbir2and |
|
| 63 |
2 4 34 36 37 40 45 62
|
gsumzsubmcl |
|
| 64 |
63
|
snssd |
|
| 65 |
1 4
|
cntz2ss |
|
| 66 |
33 64 65
|
syl2anc |
|
| 67 |
32 66
|
sstrd |
|
| 68 |
|
eldifi |
|
| 69 |
68
|
adantl |
|
| 70 |
|
ffvelcdm |
|
| 71 |
11 69 70
|
syl2an |
|
| 72 |
67 71
|
sseldd |
|
| 73 |
1 2 3 4 5 6 7 8 13 16 17 20 23 31 72
|
gsumzaddlem |
|