Metamath Proof Explorer


Theorem gsumzaddlem

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b B = Base G
gsumzadd.0 0 ˙ = 0 G
gsumzadd.p + ˙ = + G
gsumzadd.z Z = Cntz G
gsumzadd.g φ G Mnd
gsumzadd.a φ A V
gsumzadd.fn φ finSupp 0 ˙ F
gsumzadd.hn φ finSupp 0 ˙ H
gsumzaddlem.w W = F H supp 0 ˙
gsumzaddlem.f φ F : A B
gsumzaddlem.h φ H : A B
gsumzaddlem.1 φ ran F Z ran F
gsumzaddlem.2 φ ran H Z ran H
gsumzaddlem.3 φ ran F + ˙ f H Z ran F + ˙ f H
gsumzaddlem.4 φ x A k A x F k Z G H x
Assertion gsumzaddlem φ G F + ˙ f H = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsumzadd.b B = Base G
2 gsumzadd.0 0 ˙ = 0 G
3 gsumzadd.p + ˙ = + G
4 gsumzadd.z Z = Cntz G
5 gsumzadd.g φ G Mnd
6 gsumzadd.a φ A V
7 gsumzadd.fn φ finSupp 0 ˙ F
8 gsumzadd.hn φ finSupp 0 ˙ H
9 gsumzaddlem.w W = F H supp 0 ˙
10 gsumzaddlem.f φ F : A B
11 gsumzaddlem.h φ H : A B
12 gsumzaddlem.1 φ ran F Z ran F
13 gsumzaddlem.2 φ ran H Z ran H
14 gsumzaddlem.3 φ ran F + ˙ f H Z ran F + ˙ f H
15 gsumzaddlem.4 φ x A k A x F k Z G H x
16 1 2 mndidcl G Mnd 0 ˙ B
17 5 16 syl φ 0 ˙ B
18 1 3 2 mndlid G Mnd 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
19 5 17 18 syl2anc φ 0 ˙ + ˙ 0 ˙ = 0 ˙
20 19 adantr φ W = 0 ˙ + ˙ 0 ˙ = 0 ˙
21 2 fvexi 0 ˙ V
22 21 a1i φ 0 ˙ V
23 11 6 fexd φ H V
24 23 suppun φ F supp 0 ˙ F H supp 0 ˙
25 24 9 sseqtrrdi φ F supp 0 ˙ W
26 10 6 22 25 gsumcllem φ W = F = x A 0 ˙
27 26 oveq2d φ W = G F = G x A 0 ˙
28 2 gsumz G Mnd A V G x A 0 ˙ = 0 ˙
29 5 6 28 syl2anc φ G x A 0 ˙ = 0 ˙
30 29 adantr φ W = G x A 0 ˙ = 0 ˙
31 27 30 eqtrd φ W = G F = 0 ˙
32 10 6 fexd φ F V
33 32 suppun φ H supp 0 ˙ H F supp 0 ˙
34 uncom F H = H F
35 34 oveq1i F H supp 0 ˙ = H F supp 0 ˙
36 33 35 sseqtrrdi φ H supp 0 ˙ F H supp 0 ˙
37 36 9 sseqtrrdi φ H supp 0 ˙ W
38 11 6 22 37 gsumcllem φ W = H = x A 0 ˙
39 38 oveq2d φ W = G H = G x A 0 ˙
40 39 30 eqtrd φ W = G H = 0 ˙
41 31 40 oveq12d φ W = G F + ˙ G H = 0 ˙ + ˙ 0 ˙
42 6 adantr φ W = A V
43 17 ad2antrr φ W = x A 0 ˙ B
44 42 43 43 26 38 offval2 φ W = F + ˙ f H = x A 0 ˙ + ˙ 0 ˙
45 20 mpteq2dv φ W = x A 0 ˙ + ˙ 0 ˙ = x A 0 ˙
46 44 45 eqtrd φ W = F + ˙ f H = x A 0 ˙
47 46 oveq2d φ W = G F + ˙ f H = G x A 0 ˙
48 47 30 eqtrd φ W = G F + ˙ f H = 0 ˙
49 20 41 48 3eqtr4rd φ W = G F + ˙ f H = G F + ˙ G H
50 49 ex φ W = G F + ˙ f H = G F + ˙ G H
51 5 adantr φ W f : 1 W 1-1 onto W G Mnd
52 1 3 mndcl G Mnd z B w B z + ˙ w B
53 52 3expb G Mnd z B w B z + ˙ w B
54 51 53 sylan φ W f : 1 W 1-1 onto W z B w B z + ˙ w B
55 54 caovclg φ W f : 1 W 1-1 onto W x B y B x + ˙ y B
56 simprl φ W f : 1 W 1-1 onto W W
57 nnuz = 1
58 56 57 eleqtrdi φ W f : 1 W 1-1 onto W W 1
59 10 adantr φ W f : 1 W 1-1 onto W F : A B
60 f1of1 f : 1 W 1-1 onto W f : 1 W 1-1 W
61 60 ad2antll φ W f : 1 W 1-1 onto W f : 1 W 1-1 W
62 suppssdm F H supp 0 ˙ dom F H
63 62 a1i φ F H supp 0 ˙ dom F H
64 9 a1i φ W = F H supp 0 ˙
65 dmun dom F H = dom F dom H
66 10 fdmd φ dom F = A
67 11 fdmd φ dom H = A
68 66 67 uneq12d φ dom F dom H = A A
69 unidm A A = A
70 68 69 eqtrdi φ dom F dom H = A
71 65 70 eqtr2id φ A = dom F H
72 63 64 71 3sstr4d φ W A
73 72 adantr φ W f : 1 W 1-1 onto W W A
74 f1ss f : 1 W 1-1 W W A f : 1 W 1-1 A
75 61 73 74 syl2anc φ W f : 1 W 1-1 onto W f : 1 W 1-1 A
76 f1f f : 1 W 1-1 A f : 1 W A
77 75 76 syl φ W f : 1 W 1-1 onto W f : 1 W A
78 fco F : A B f : 1 W A F f : 1 W B
79 59 77 78 syl2anc φ W f : 1 W 1-1 onto W F f : 1 W B
80 79 ffvelrnda φ W f : 1 W 1-1 onto W k 1 W F f k B
81 11 adantr φ W f : 1 W 1-1 onto W H : A B
82 fco H : A B f : 1 W A H f : 1 W B
83 81 77 82 syl2anc φ W f : 1 W 1-1 onto W H f : 1 W B
84 83 ffvelrnda φ W f : 1 W 1-1 onto W k 1 W H f k B
85 59 ffnd φ W f : 1 W 1-1 onto W F Fn A
86 81 ffnd φ W f : 1 W 1-1 onto W H Fn A
87 6 adantr φ W f : 1 W 1-1 onto W A V
88 ovexd φ W f : 1 W 1-1 onto W 1 W V
89 inidm A A = A
90 85 86 77 87 87 88 89 ofco φ W f : 1 W 1-1 onto W F + ˙ f H f = F f + ˙ f H f
91 90 fveq1d φ W f : 1 W 1-1 onto W F + ˙ f H f k = F f + ˙ f H f k
92 91 adantr φ W f : 1 W 1-1 onto W k 1 W F + ˙ f H f k = F f + ˙ f H f k
93 fnfco F Fn A f : 1 W A F f Fn 1 W
94 85 77 93 syl2anc φ W f : 1 W 1-1 onto W F f Fn 1 W
95 fnfco H Fn A f : 1 W A H f Fn 1 W
96 86 77 95 syl2anc φ W f : 1 W 1-1 onto W H f Fn 1 W
97 inidm 1 W 1 W = 1 W
98 eqidd φ W f : 1 W 1-1 onto W k 1 W F f k = F f k
99 eqidd φ W f : 1 W 1-1 onto W k 1 W H f k = H f k
100 94 96 88 88 97 98 99 ofval φ W f : 1 W 1-1 onto W k 1 W F f + ˙ f H f k = F f k + ˙ H f k
101 92 100 eqtrd φ W f : 1 W 1-1 onto W k 1 W F + ˙ f H f k = F f k + ˙ H f k
102 5 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W G Mnd
103 elfzouz n 1 ..^ W n 1
104 103 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W n 1
105 elfzouz2 n 1 ..^ W W n
106 105 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W W n
107 fzss2 W n 1 n 1 W
108 106 107 syl φ W f : 1 W 1-1 onto W n 1 ..^ W 1 n 1 W
109 108 sselda φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n k 1 W
110 80 adantlr φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 W F f k B
111 109 110 syldan φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n F f k B
112 1 3 mndcl G Mnd k B x B k + ˙ x B
113 112 3expb G Mnd k B x B k + ˙ x B
114 102 113 sylan φ W f : 1 W 1-1 onto W n 1 ..^ W k B x B k + ˙ x B
115 104 111 114 seqcl φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ F f n B
116 84 adantlr φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 W H f k B
117 109 116 syldan φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n H f k B
118 104 117 114 seqcl φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n B
119 fzofzp1 n 1 ..^ W n + 1 1 W
120 ffvelrn F f : 1 W B n + 1 1 W F f n + 1 B
121 79 119 120 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 B
122 ffvelrn H f : 1 W B n + 1 1 W H f n + 1 B
123 83 119 122 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W H f n + 1 B
124 fvco3 f : 1 W A n + 1 1 W F f n + 1 = F f n + 1
125 77 119 124 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 = F f n + 1
126 fveq2 k = f n + 1 F k = F f n + 1
127 126 eleq1d k = f n + 1 F k Z G H f 1 n F f n + 1 Z G H f 1 n
128 15 expr φ x A k A x F k Z G H x
129 128 ralrimiv φ x A k A x F k Z G H x
130 129 ex φ x A k A x F k Z G H x
131 130 alrimiv φ x x A k A x F k Z G H x
132 131 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W x x A k A x F k Z G H x
133 imassrn f 1 n ran f
134 77 adantr φ W f : 1 W 1-1 onto W n 1 ..^ W f : 1 W A
135 134 frnd φ W f : 1 W 1-1 onto W n 1 ..^ W ran f A
136 133 135 sstrid φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n A
137 vex f V
138 137 imaex f 1 n V
139 sseq1 x = f 1 n x A f 1 n A
140 difeq2 x = f 1 n A x = A f 1 n
141 reseq2 x = f 1 n H x = H f 1 n
142 141 oveq2d x = f 1 n G H x = G H f 1 n
143 142 sneqd x = f 1 n G H x = G H f 1 n
144 143 fveq2d x = f 1 n Z G H x = Z G H f 1 n
145 144 eleq2d x = f 1 n F k Z G H x F k Z G H f 1 n
146 140 145 raleqbidv x = f 1 n k A x F k Z G H x k A f 1 n F k Z G H f 1 n
147 139 146 imbi12d x = f 1 n x A k A x F k Z G H x f 1 n A k A f 1 n F k Z G H f 1 n
148 138 147 spcv x x A k A x F k Z G H x f 1 n A k A f 1 n F k Z G H f 1 n
149 132 136 148 sylc φ W f : 1 W 1-1 onto W n 1 ..^ W k A f 1 n F k Z G H f 1 n
150 ffvelrn f : 1 W A n + 1 1 W f n + 1 A
151 77 119 150 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 A
152 fzp1nel ¬ n + 1 1 n
153 75 adantr φ W f : 1 W 1-1 onto W n 1 ..^ W f : 1 W 1-1 A
154 119 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W n + 1 1 W
155 f1elima f : 1 W 1-1 A n + 1 1 W 1 n 1 W f n + 1 f 1 n n + 1 1 n
156 153 154 108 155 syl3anc φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 f 1 n n + 1 1 n
157 152 156 mtbiri φ W f : 1 W 1-1 onto W n 1 ..^ W ¬ f n + 1 f 1 n
158 151 157 eldifd φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 A f 1 n
159 127 149 158 rspcdva φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 Z G H f 1 n
160 125 159 eqeltrd φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 Z G H f 1 n
161 138 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n V
162 11 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W H : A B
163 162 136 fssresd φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n : f 1 n B
164 13 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W ran H Z ran H
165 resss H f 1 n H
166 165 rnssi ran H f 1 n ran H
167 4 cntzidss ran H Z ran H ran H f 1 n ran H ran H f 1 n Z ran H f 1 n
168 164 166 167 sylancl φ W f : 1 W 1-1 onto W n 1 ..^ W ran H f 1 n Z ran H f 1 n
169 104 57 eleqtrrdi φ W f : 1 W 1-1 onto W n 1 ..^ W n
170 f1ores f : 1 W 1-1 A 1 n 1 W f 1 n : 1 n 1-1 onto f 1 n
171 153 108 170 syl2anc φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n : 1 n 1-1 onto f 1 n
172 f1of1 f 1 n : 1 n 1-1 onto f 1 n f 1 n : 1 n 1-1 f 1 n
173 171 172 syl φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n : 1 n 1-1 f 1 n
174 suppssdm H f 1 n supp 0 ˙ dom H f 1 n
175 dmres dom H f 1 n = f 1 n dom H
176 175 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W dom H f 1 n = f 1 n dom H
177 174 176 sseqtrid φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n supp 0 ˙ f 1 n dom H
178 inss1 f 1 n dom H f 1 n
179 df-ima f 1 n = ran f 1 n
180 179 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n = ran f 1 n
181 178 180 sseqtrid φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n dom H ran f 1 n
182 177 181 sstrd φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n supp 0 ˙ ran f 1 n
183 eqid H f 1 n f 1 n supp 0 ˙ = H f 1 n f 1 n supp 0 ˙
184 1 2 3 4 102 161 163 168 169 173 182 183 gsumval3 φ W f : 1 W 1-1 onto W n 1 ..^ W G H f 1 n = seq 1 + ˙ H f 1 n f 1 n n
185 179 eqimss2i ran f 1 n f 1 n
186 cores ran f 1 n f 1 n H f 1 n f 1 n = H f 1 n
187 185 186 ax-mp H f 1 n f 1 n = H f 1 n
188 resco H f 1 n = H f 1 n
189 187 188 eqtr4i H f 1 n f 1 n = H f 1 n
190 189 fveq1i H f 1 n f 1 n k = H f 1 n k
191 fvres k 1 n H f 1 n k = H f k
192 190 191 eqtrid k 1 n H f 1 n f 1 n k = H f k
193 192 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n H f 1 n f 1 n k = H f k
194 104 193 seqfveq φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f 1 n f 1 n n = seq 1 + ˙ H f n
195 184 194 eqtr2d φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n = G H f 1 n
196 fvex seq 1 + ˙ H f n V
197 196 elsn seq 1 + ˙ H f n G H f 1 n seq 1 + ˙ H f n = G H f 1 n
198 195 197 sylibr φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n G H f 1 n
199 3 4 cntzi F f n + 1 Z G H f 1 n seq 1 + ˙ H f n G H f 1 n F f n + 1 + ˙ seq 1 + ˙ H f n = seq 1 + ˙ H f n + ˙ F f n + 1
200 160 198 199 syl2anc φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 + ˙ seq 1 + ˙ H f n = seq 1 + ˙ H f n + ˙ F f n + 1
201 200 eqcomd φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n + ˙ F f n + 1 = F f n + 1 + ˙ seq 1 + ˙ H f n
202 1 3 102 115 118 121 123 201 mnd4g φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ F f n + ˙ seq 1 + ˙ H f n + ˙ F f n + 1 + ˙ H f n + 1 = seq 1 + ˙ F f n + ˙ F f n + 1 + ˙ seq 1 + ˙ H f n + ˙ H f n + 1
203 55 55 58 80 84 101 202 seqcaopr3 φ W f : 1 W 1-1 onto W seq 1 + ˙ F + ˙ f H f W = seq 1 + ˙ F f W + ˙ seq 1 + ˙ H f W
204 54 59 81 87 87 89 off φ W f : 1 W 1-1 onto W F + ˙ f H : A B
205 14 adantr φ W f : 1 W 1-1 onto W ran F + ˙ f H Z ran F + ˙ f H
206 51 113 sylan φ W f : 1 W 1-1 onto W k B x B k + ˙ x B
207 206 59 81 87 87 89 off φ W f : 1 W 1-1 onto W F + ˙ f H : A B
208 eldifi x A ran f x A
209 eqidd φ W f : 1 W 1-1 onto W x A F x = F x
210 eqidd φ W f : 1 W 1-1 onto W x A H x = H x
211 85 86 87 87 89 209 210 ofval φ W f : 1 W 1-1 onto W x A F + ˙ f H x = F x + ˙ H x
212 208 211 sylan2 φ W f : 1 W 1-1 onto W x A ran f F + ˙ f H x = F x + ˙ H x
213 24 adantr φ W f : 1 W 1-1 onto W F supp 0 ˙ F H supp 0 ˙
214 f1ofo f : 1 W 1-1 onto W f : 1 W onto W
215 forn f : 1 W onto W ran f = W
216 214 215 syl f : 1 W 1-1 onto W ran f = W
217 216 9 eqtrdi f : 1 W 1-1 onto W ran f = F H supp 0 ˙
218 217 sseq2d f : 1 W 1-1 onto W F supp 0 ˙ ran f F supp 0 ˙ F H supp 0 ˙
219 218 ad2antll φ W f : 1 W 1-1 onto W F supp 0 ˙ ran f F supp 0 ˙ F H supp 0 ˙
220 213 219 mpbird φ W f : 1 W 1-1 onto W F supp 0 ˙ ran f
221 21 a1i φ W f : 1 W 1-1 onto W 0 ˙ V
222 59 220 87 221 suppssr φ W f : 1 W 1-1 onto W x A ran f F x = 0 ˙
223 33 adantr φ W f : 1 W 1-1 onto W H supp 0 ˙ H F supp 0 ˙
224 223 35 sseqtrrdi φ W f : 1 W 1-1 onto W H supp 0 ˙ F H supp 0 ˙
225 217 sseq2d f : 1 W 1-1 onto W H supp 0 ˙ ran f H supp 0 ˙ F H supp 0 ˙
226 225 ad2antll φ W f : 1 W 1-1 onto W H supp 0 ˙ ran f H supp 0 ˙ F H supp 0 ˙
227 224 226 mpbird φ W f : 1 W 1-1 onto W H supp 0 ˙ ran f
228 81 227 87 221 suppssr φ W f : 1 W 1-1 onto W x A ran f H x = 0 ˙
229 222 228 oveq12d φ W f : 1 W 1-1 onto W x A ran f F x + ˙ H x = 0 ˙ + ˙ 0 ˙
230 19 ad2antrr φ W f : 1 W 1-1 onto W x A ran f 0 ˙ + ˙ 0 ˙ = 0 ˙
231 212 229 230 3eqtrd φ W f : 1 W 1-1 onto W x A ran f F + ˙ f H x = 0 ˙
232 207 231 suppss φ W f : 1 W 1-1 onto W F + ˙ f H supp 0 ˙ ran f
233 ovex F + ˙ f H V
234 233 137 coex F + ˙ f H f V
235 suppimacnv F + ˙ f H f V 0 ˙ V F + ˙ f H f supp 0 ˙ = F + ˙ f H f -1 V 0 ˙
236 235 eqcomd F + ˙ f H f V 0 ˙ V F + ˙ f H f -1 V 0 ˙ = F + ˙ f H f supp 0 ˙
237 234 21 236 mp2an F + ˙ f H f -1 V 0 ˙ = F + ˙ f H f supp 0 ˙
238 1 2 3 4 51 87 204 205 56 75 232 237 gsumval3 φ W f : 1 W 1-1 onto W G F + ˙ f H = seq 1 + ˙ F + ˙ f H f W
239 12 adantr φ W f : 1 W 1-1 onto W ran F Z ran F
240 eqid F f supp 0 ˙ = F f supp 0 ˙
241 1 2 3 4 51 87 59 239 56 75 220 240 gsumval3 φ W f : 1 W 1-1 onto W G F = seq 1 + ˙ F f W
242 13 adantr φ W f : 1 W 1-1 onto W ran H Z ran H
243 eqid H f supp 0 ˙ = H f supp 0 ˙
244 1 2 3 4 51 87 81 242 56 75 227 243 gsumval3 φ W f : 1 W 1-1 onto W G H = seq 1 + ˙ H f W
245 241 244 oveq12d φ W f : 1 W 1-1 onto W G F + ˙ G H = seq 1 + ˙ F f W + ˙ seq 1 + ˙ H f W
246 203 238 245 3eqtr4d φ W f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
247 246 expr φ W f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
248 247 exlimdv φ W f f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
249 248 expimpd φ W f f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
250 7 8 fsuppun φ F H supp 0 ˙ Fin
251 9 250 eqeltrid φ W Fin
252 fz1f1o W Fin W = W f f : 1 W 1-1 onto W
253 251 252 syl φ W = W f f : 1 W 1-1 onto W
254 50 249 253 mpjaod φ G F + ˙ f H = G F + ˙ G H