Metamath Proof Explorer


Theorem gsumzcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)

Ref Expression
Hypotheses gsumzcl.b B=BaseG
gsumzcl.0 0˙=0G
gsumzcl.z Z=CntzG
gsumzcl.g φGMnd
gsumzcl.a φAV
gsumzcl.f φF:AB
gsumzcl.c φranFZranF
gsumzcl.w φfinSupp0˙F
Assertion gsumzcl φGFB

Proof

Step Hyp Ref Expression
1 gsumzcl.b B=BaseG
2 gsumzcl.0 0˙=0G
3 gsumzcl.z Z=CntzG
4 gsumzcl.g φGMnd
5 gsumzcl.a φAV
6 gsumzcl.f φF:AB
7 gsumzcl.c φranFZranF
8 gsumzcl.w φfinSupp0˙F
9 8 fsuppimpd φFsupp0˙Fin
10 1 2 3 4 5 6 7 9 gsumzcl2 φGFB