Metamath Proof Explorer
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumzcl.b |
|
|
|
gsumzcl.0 |
|
|
|
gsumzcl.z |
|
|
|
gsumzcl.g |
|
|
|
gsumzcl.a |
|
|
|
gsumzcl.f |
|
|
|
gsumzcl.c |
|
|
|
gsumzcl.w |
|
|
Assertion |
gsumzcl |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzcl.b |
|
2 |
|
gsumzcl.0 |
|
3 |
|
gsumzcl.z |
|
4 |
|
gsumzcl.g |
|
5 |
|
gsumzcl.a |
|
6 |
|
gsumzcl.f |
|
7 |
|
gsumzcl.c |
|
8 |
|
gsumzcl.w |
|
9 |
8
|
fsuppimpd |
|
10 |
1 2 3 4 5 6 7 9
|
gsumzcl2 |
|