Metamath Proof Explorer


Theorem gsumzcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)

Ref Expression
Hypotheses gsumzcl.b B = Base G
gsumzcl.0 0 ˙ = 0 G
gsumzcl.z Z = Cntz G
gsumzcl.g φ G Mnd
gsumzcl.a φ A V
gsumzcl.f φ F : A B
gsumzcl.c φ ran F Z ran F
gsumzcl.w φ finSupp 0 ˙ F
Assertion gsumzcl φ G F B

Proof

Step Hyp Ref Expression
1 gsumzcl.b B = Base G
2 gsumzcl.0 0 ˙ = 0 G
3 gsumzcl.z Z = Cntz G
4 gsumzcl.g φ G Mnd
5 gsumzcl.a φ A V
6 gsumzcl.f φ F : A B
7 gsumzcl.c φ ran F Z ran F
8 gsumzcl.w φ finSupp 0 ˙ F
9 8 fsuppimpd φ F supp 0 ˙ Fin
10 1 2 3 4 5 6 7 9 gsumzcl2 φ G F B