Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzcl.b |
|
2 |
|
gsumzcl.0 |
|
3 |
|
gsumzcl.z |
|
4 |
|
gsumzcl.g |
|
5 |
|
gsumzcl.a |
|
6 |
|
gsumzcl.f |
|
7 |
|
gsumzcl.c |
|
8 |
|
gsumzcl2.w |
|
9 |
2
|
fvexi |
|
10 |
9
|
a1i |
|
11 |
|
ssidd |
|
12 |
6 5 10 11
|
gsumcllem |
|
13 |
12
|
oveq2d |
|
14 |
2
|
gsumz |
|
15 |
4 5 14
|
syl2anc |
|
16 |
15
|
adantr |
|
17 |
13 16
|
eqtrd |
|
18 |
1 2
|
mndidcl |
|
19 |
4 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
17 20
|
eqeltrd |
|
22 |
21
|
ex |
|
23 |
|
eqid |
|
24 |
4
|
adantr |
|
25 |
5
|
adantr |
|
26 |
6
|
adantr |
|
27 |
7
|
adantr |
|
28 |
|
simprl |
|
29 |
|
f1of1 |
|
30 |
29
|
ad2antll |
|
31 |
|
suppssdm |
|
32 |
31 6
|
fssdm |
|
33 |
32
|
adantr |
|
34 |
|
f1ss |
|
35 |
30 33 34
|
syl2anc |
|
36 |
|
ssid |
|
37 |
|
f1ofo |
|
38 |
|
forn |
|
39 |
37 38
|
syl |
|
40 |
39
|
ad2antll |
|
41 |
36 40
|
sseqtrrid |
|
42 |
|
eqid |
|
43 |
1 2 23 3 24 25 26 27 28 35 41 42
|
gsumval3 |
|
44 |
|
nnuz |
|
45 |
28 44
|
eleqtrdi |
|
46 |
|
f1f |
|
47 |
35 46
|
syl |
|
48 |
|
fco |
|
49 |
26 47 48
|
syl2anc |
|
50 |
49
|
ffvelrnda |
|
51 |
1 23
|
mndcl |
|
52 |
51
|
3expb |
|
53 |
24 52
|
sylan |
|
54 |
45 50 53
|
seqcl |
|
55 |
43 54
|
eqeltrd |
|
56 |
55
|
expr |
|
57 |
56
|
exlimdv |
|
58 |
57
|
expimpd |
|
59 |
|
fz1f1o |
|
60 |
8 59
|
syl |
|
61 |
22 58 60
|
mpjaod |
|