| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzcl.b |
|
| 2 |
|
gsumzcl.0 |
|
| 3 |
|
gsumzcl.z |
|
| 4 |
|
gsumzcl.g |
|
| 5 |
|
gsumzcl.a |
|
| 6 |
|
gsumzcl.f |
|
| 7 |
|
gsumzcl.c |
|
| 8 |
|
gsumzcl.w |
|
| 9 |
|
gsumzf1o.h |
|
| 10 |
2
|
gsumz |
|
| 11 |
4 5 10
|
syl2anc |
|
| 12 |
|
f1of1 |
|
| 13 |
9 12
|
syl |
|
| 14 |
|
f1dmex |
|
| 15 |
13 5 14
|
syl2anc |
|
| 16 |
2
|
gsumz |
|
| 17 |
4 15 16
|
syl2anc |
|
| 18 |
11 17
|
eqtr4d |
|
| 19 |
18
|
adantr |
|
| 20 |
2
|
fvexi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
ssidd |
|
| 23 |
6 5 21 22
|
gsumcllem |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
f1of |
|
| 26 |
9 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
27
|
feqmptd |
|
| 30 |
|
eqidd |
|
| 31 |
28 29 23 30
|
fmptco |
|
| 32 |
31
|
oveq2d |
|
| 33 |
19 24 32
|
3eqtr4d |
|
| 34 |
33
|
ex |
|
| 35 |
9
|
adantr |
|
| 36 |
|
f1ococnv2 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
coeq1d |
|
| 39 |
|
f1of1 |
|
| 40 |
39
|
ad2antll |
|
| 41 |
|
suppssdm |
|
| 42 |
41 6
|
fssdm |
|
| 43 |
42
|
adantr |
|
| 44 |
|
f1ss |
|
| 45 |
40 43 44
|
syl2anc |
|
| 46 |
|
f1f |
|
| 47 |
|
fcoi2 |
|
| 48 |
45 46 47
|
3syl |
|
| 49 |
38 48
|
eqtrd |
|
| 50 |
|
coass |
|
| 51 |
49 50
|
eqtr3di |
|
| 52 |
51
|
coeq2d |
|
| 53 |
|
coass |
|
| 54 |
52 53
|
eqtr4di |
|
| 55 |
54
|
seqeq3d |
|
| 56 |
55
|
fveq1d |
|
| 57 |
|
eqid |
|
| 58 |
4
|
adantr |
|
| 59 |
5
|
adantr |
|
| 60 |
6
|
adantr |
|
| 61 |
7
|
adantr |
|
| 62 |
|
simprl |
|
| 63 |
|
ssid |
|
| 64 |
|
f1ofo |
|
| 65 |
|
forn |
|
| 66 |
64 65
|
syl |
|
| 67 |
66
|
ad2antll |
|
| 68 |
63 67
|
sseqtrrid |
|
| 69 |
|
eqid |
|
| 70 |
1 2 57 3 58 59 60 61 62 45 68 69
|
gsumval3 |
|
| 71 |
15
|
adantr |
|
| 72 |
|
fco |
|
| 73 |
6 26 72
|
syl2anc |
|
| 74 |
73
|
adantr |
|
| 75 |
|
rncoss |
|
| 76 |
3
|
cntzidss |
|
| 77 |
7 75 76
|
sylancl |
|
| 78 |
77
|
adantr |
|
| 79 |
|
f1ocnv |
|
| 80 |
|
f1of1 |
|
| 81 |
9 79 80
|
3syl |
|
| 82 |
81
|
adantr |
|
| 83 |
|
f1co |
|
| 84 |
82 45 83
|
syl2anc |
|
| 85 |
|
ssidd |
|
| 86 |
6 5
|
fexd |
|
| 87 |
|
suppimacnv |
|
| 88 |
86 20 87
|
sylancl |
|
| 89 |
88
|
eqcomd |
|
| 90 |
89
|
adantr |
|
| 91 |
85 90 67
|
3sstr4d |
|
| 92 |
|
imass2 |
|
| 93 |
91 92
|
syl |
|
| 94 |
|
cnvco |
|
| 95 |
94
|
imaeq1i |
|
| 96 |
|
imaco |
|
| 97 |
95 96
|
eqtri |
|
| 98 |
|
rnco2 |
|
| 99 |
93 97 98
|
3sstr4g |
|
| 100 |
|
f1oexrnex |
|
| 101 |
9 5 100
|
syl2anc |
|
| 102 |
|
coexg |
|
| 103 |
86 101 102
|
syl2anc |
|
| 104 |
|
suppimacnv |
|
| 105 |
103 20 104
|
sylancl |
|
| 106 |
105
|
sseq1d |
|
| 107 |
106
|
adantr |
|
| 108 |
99 107
|
mpbird |
|
| 109 |
|
eqid |
|
| 110 |
1 2 57 3 58 71 74 78 62 84 108 109
|
gsumval3 |
|
| 111 |
56 70 110
|
3eqtr4d |
|
| 112 |
111
|
expr |
|
| 113 |
112
|
exlimdv |
|
| 114 |
113
|
expimpd |
|
| 115 |
|
fsuppimp |
|
| 116 |
115
|
simprd |
|
| 117 |
|
fz1f1o |
|
| 118 |
8 116 117
|
3syl |
|
| 119 |
34 114 118
|
mpjaod |
|