| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzinv.b |  | 
						
							| 2 |  | gsumzinv.0 |  | 
						
							| 3 |  | gsumzinv.z |  | 
						
							| 4 |  | gsumzinv.i |  | 
						
							| 5 |  | gsumzinv.g |  | 
						
							| 6 |  | gsumzinv.a |  | 
						
							| 7 |  | gsumzinv.f |  | 
						
							| 8 |  | gsumzinv.c |  | 
						
							| 9 |  | gsumzinv.n |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 5 | grpmndd |  | 
						
							| 12 | 1 4 | grpinvf |  | 
						
							| 13 | 5 12 | syl |  | 
						
							| 14 |  | fco |  | 
						
							| 15 | 13 7 14 | syl2anc |  | 
						
							| 16 | 10 4 | invoppggim |  | 
						
							| 17 |  | gimghm |  | 
						
							| 18 |  | ghmmhm |  | 
						
							| 19 | 5 16 17 18 | 4syl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 3 20 | cntzmhm2 |  | 
						
							| 22 | 19 8 21 | syl2anc |  | 
						
							| 23 |  | rnco2 |  | 
						
							| 24 | 23 | fveq2i |  | 
						
							| 25 | 10 3 | oppgcntz |  | 
						
							| 26 | 24 25 | eqtri |  | 
						
							| 27 | 22 23 26 | 3sstr4g |  | 
						
							| 28 | 2 | fvexi |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 1 | fvexi |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 2 4 | grpinvid |  | 
						
							| 33 | 5 32 | syl |  | 
						
							| 34 | 29 7 13 6 31 9 33 | fsuppco2 |  | 
						
							| 35 | 1 2 3 10 11 6 15 27 34 | gsumzoppg |  | 
						
							| 36 | 10 | oppgmnd |  | 
						
							| 37 | 11 36 | syl |  | 
						
							| 38 | 1 3 11 37 6 19 7 8 2 9 | gsumzmhm |  | 
						
							| 39 | 35 38 | eqtr3d |  |