Metamath Proof Explorer


Theorem gsumzoppg

Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzoppg.b B = Base G
gsumzoppg.0 0 ˙ = 0 G
gsumzoppg.z Z = Cntz G
gsumzoppg.o O = opp 𝑔 G
gsumzoppg.g φ G Mnd
gsumzoppg.a φ A V
gsumzoppg.f φ F : A B
gsumzoppg.c φ ran F Z ran F
gsumzoppg.n φ finSupp 0 ˙ F
Assertion gsumzoppg φ O F = G F

Proof

Step Hyp Ref Expression
1 gsumzoppg.b B = Base G
2 gsumzoppg.0 0 ˙ = 0 G
3 gsumzoppg.z Z = Cntz G
4 gsumzoppg.o O = opp 𝑔 G
5 gsumzoppg.g φ G Mnd
6 gsumzoppg.a φ A V
7 gsumzoppg.f φ F : A B
8 gsumzoppg.c φ ran F Z ran F
9 gsumzoppg.n φ finSupp 0 ˙ F
10 4 oppgmnd G Mnd O Mnd
11 5 10 syl φ O Mnd
12 4 2 oppgid 0 ˙ = 0 O
13 12 gsumz O Mnd A V O k A 0 ˙ = 0 ˙
14 11 6 13 syl2anc φ O k A 0 ˙ = 0 ˙
15 2 gsumz G Mnd A V G k A 0 ˙ = 0 ˙
16 5 6 15 syl2anc φ G k A 0 ˙ = 0 ˙
17 14 16 eqtr4d φ O k A 0 ˙ = G k A 0 ˙
18 17 adantr φ F -1 V 0 ˙ = O k A 0 ˙ = G k A 0 ˙
19 2 fvexi 0 ˙ V
20 19 a1i φ 0 ˙ V
21 ssid F -1 V 0 ˙ F -1 V 0 ˙
22 7 6 fexd φ F V
23 suppimacnv F V 0 ˙ V F supp 0 ˙ = F -1 V 0 ˙
24 22 19 23 sylancl φ F supp 0 ˙ = F -1 V 0 ˙
25 24 sseq1d φ F supp 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙
26 21 25 mpbiri φ F supp 0 ˙ F -1 V 0 ˙
27 7 6 20 26 gsumcllem φ F -1 V 0 ˙ = F = k A 0 ˙
28 27 oveq2d φ F -1 V 0 ˙ = O F = O k A 0 ˙
29 27 oveq2d φ F -1 V 0 ˙ = G F = G k A 0 ˙
30 18 28 29 3eqtr4d φ F -1 V 0 ˙ = O F = G F
31 30 ex φ F -1 V 0 ˙ = O F = G F
32 simprl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙
33 nnuz = 1
34 32 33 eleqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ 1
35 7 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A B
36 ffn F : A B F Fn A
37 dffn4 F Fn A F : A onto ran F
38 36 37 sylib F : A B F : A onto ran F
39 fof F : A onto ran F F : A ran F
40 35 38 39 3syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A ran F
41 5 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G Mnd
42 1 submacs G Mnd SubMnd G ACS B
43 acsmre SubMnd G ACS B SubMnd G Moore B
44 41 42 43 3syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ SubMnd G Moore B
45 eqid mrCls SubMnd G = mrCls SubMnd G
46 35 frnd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F B
47 44 45 46 mrcssidd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F mrCls SubMnd G ran F
48 40 47 fssd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A mrCls SubMnd G ran F
49 f1of1 f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙
50 49 ad2antll φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙
51 cnvimass F -1 V 0 ˙ dom F
52 51 35 fssdm φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ A
53 f1ss f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙ F -1 V 0 ˙ A f : 1 F -1 V 0 ˙ 1-1 A
54 50 52 53 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 A
55 f1f f : 1 F -1 V 0 ˙ 1-1 A f : 1 F -1 V 0 ˙ A
56 54 55 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ A
57 fco F : A mrCls SubMnd G ran F f : 1 F -1 V 0 ˙ A F f : 1 F -1 V 0 ˙ mrCls SubMnd G ran F
58 48 56 57 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F f : 1 F -1 V 0 ˙ mrCls SubMnd G ran F
59 58 ffvelrnda φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x 1 F -1 V 0 ˙ F f x mrCls SubMnd G ran F
60 45 mrccl SubMnd G Moore B ran F B mrCls SubMnd G ran F SubMnd G
61 44 46 60 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F SubMnd G
62 4 oppgsubm SubMnd G = SubMnd O
63 61 62 eleqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F SubMnd O
64 eqid + O = + O
65 64 submcl mrCls SubMnd G ran F SubMnd O x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
66 65 3expb mrCls SubMnd G ran F SubMnd O x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
67 63 66 sylan φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
68 eqid + G = + G
69 68 4 64 oppgplus x + O y = y + G x
70 8 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F Z ran F
71 eqid G 𝑠 mrCls SubMnd G ran F = G 𝑠 mrCls SubMnd G ran F
72 3 45 71 cntzspan G Mnd ran F Z ran F G 𝑠 mrCls SubMnd G ran F CMnd
73 41 70 72 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G 𝑠 mrCls SubMnd G ran F CMnd
74 71 3 submcmn2 mrCls SubMnd G ran F SubMnd G G 𝑠 mrCls SubMnd G ran F CMnd mrCls SubMnd G ran F Z mrCls SubMnd G ran F
75 61 74 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G 𝑠 mrCls SubMnd G ran F CMnd mrCls SubMnd G ran F Z mrCls SubMnd G ran F
76 73 75 mpbid φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F Z mrCls SubMnd G ran F
77 76 sselda φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F x Z mrCls SubMnd G ran F
78 68 3 cntzi x Z mrCls SubMnd G ran F y mrCls SubMnd G ran F x + G y = y + G x
79 77 78 sylan φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + G y = y + G x
80 69 79 eqtr4id φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y = x + G y
81 80 anasss φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y = x + G y
82 34 59 67 81 seqfeq4 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ seq 1 + O F f F -1 V 0 ˙ = seq 1 + G F f F -1 V 0 ˙
83 4 1 oppgbas B = Base O
84 eqid Cntz O = Cntz O
85 41 10 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O Mnd
86 6 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ A V
87 4 3 oppgcntz Z ran F = Cntz O ran F
88 70 87 sseqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F Cntz O ran F
89 suppssdm F supp 0 ˙ dom F
90 24 89 eqsstrrdi φ F -1 V 0 ˙ dom F
91 7 90 fssdmd φ F -1 V 0 ˙ A
92 91 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ A
93 50 92 53 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 A
94 25 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙
95 21 94 mpbiri φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙
96 f1ofo f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ onto F -1 V 0 ˙
97 forn f : 1 F -1 V 0 ˙ onto F -1 V 0 ˙ ran f = F -1 V 0 ˙
98 96 97 syl f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran f = F -1 V 0 ˙
99 98 sseq2d f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f F supp 0 ˙ F -1 V 0 ˙
100 99 ad2antll φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f F supp 0 ˙ F -1 V 0 ˙
101 95 100 mpbird φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f
102 eqid F f supp 0 ˙ = F f supp 0 ˙
103 83 12 64 84 85 86 35 88 32 93 101 102 gsumval3 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = seq 1 + O F f F -1 V 0 ˙
104 26 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙
105 104 100 mpbird φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f
106 1 2 68 3 41 86 35 70 32 93 105 102 gsumval3 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G F = seq 1 + G F f F -1 V 0 ˙
107 82 103 106 3eqtr4d φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
108 107 expr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
109 108 exlimdv φ F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
110 109 expimpd φ F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
111 9 fsuppimpd φ F supp 0 ˙ Fin
112 24 111 eqeltrrd φ F -1 V 0 ˙ Fin
113 fz1f1o F -1 V 0 ˙ Fin F -1 V 0 ˙ = F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙
114 112 113 syl φ F -1 V 0 ˙ = F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙
115 31 110 114 mpjaod φ O F = G F