Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzsplit.b |
|
2 |
|
gsumzsplit.0 |
|
3 |
|
gsumzsplit.p |
|
4 |
|
gsumzsplit.z |
|
5 |
|
gsumzsplit.g |
|
6 |
|
gsumzsplit.a |
|
7 |
|
gsumzsplit.f |
|
8 |
|
gsumzsplit.c |
|
9 |
|
gsumzsplit.w |
|
10 |
|
gsumzsplit.i |
|
11 |
|
gsumzsplit.u |
|
12 |
2
|
fvexi |
|
13 |
12
|
a1i |
|
14 |
7 6 13 9
|
fsuppmptif |
|
15 |
7 6 13 9
|
fsuppmptif |
|
16 |
1
|
submacs |
|
17 |
|
acsmre |
|
18 |
5 16 17
|
3syl |
|
19 |
7
|
frnd |
|
20 |
|
eqid |
|
21 |
20
|
mrccl |
|
22 |
18 19 21
|
syl2anc |
|
23 |
|
eqid |
|
24 |
4 20 23
|
cntzspan |
|
25 |
5 8 24
|
syl2anc |
|
26 |
23 4
|
submcmn2 |
|
27 |
22 26
|
syl |
|
28 |
25 27
|
mpbid |
|
29 |
18 20 19
|
mrcssidd |
|
30 |
29
|
adantr |
|
31 |
7
|
ffnd |
|
32 |
|
fnfvelrn |
|
33 |
31 32
|
sylan |
|
34 |
30 33
|
sseldd |
|
35 |
2
|
subm0cl |
|
36 |
22 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
34 37
|
ifcld |
|
39 |
38
|
fmpttd |
|
40 |
34 37
|
ifcld |
|
41 |
40
|
fmpttd |
|
42 |
1 2 3 4 5 6 14 15 22 28 39 41
|
gsumzadd |
|
43 |
7
|
feqmptd |
|
44 |
|
iftrue |
|
45 |
44
|
adantl |
|
46 |
|
noel |
|
47 |
|
eleq2 |
|
48 |
46 47
|
mtbiri |
|
49 |
10 48
|
syl |
|
50 |
49
|
adantr |
|
51 |
|
elin |
|
52 |
50 51
|
sylnib |
|
53 |
|
imnan |
|
54 |
52 53
|
sylibr |
|
55 |
54
|
imp |
|
56 |
55
|
iffalsed |
|
57 |
45 56
|
oveq12d |
|
58 |
7
|
ffvelrnda |
|
59 |
1 3 2
|
mndrid |
|
60 |
5 58 59
|
syl2an2r |
|
61 |
60
|
adantr |
|
62 |
57 61
|
eqtrd |
|
63 |
54
|
con2d |
|
64 |
63
|
imp |
|
65 |
64
|
iffalsed |
|
66 |
|
iftrue |
|
67 |
66
|
adantl |
|
68 |
65 67
|
oveq12d |
|
69 |
1 3 2
|
mndlid |
|
70 |
5 58 69
|
syl2an2r |
|
71 |
70
|
adantr |
|
72 |
68 71
|
eqtrd |
|
73 |
11
|
eleq2d |
|
74 |
|
elun |
|
75 |
73 74
|
bitrdi |
|
76 |
75
|
biimpa |
|
77 |
62 72 76
|
mpjaodan |
|
78 |
77
|
mpteq2dva |
|
79 |
43 78
|
eqtr4d |
|
80 |
1 2
|
mndidcl |
|
81 |
5 80
|
syl |
|
82 |
81
|
adantr |
|
83 |
58 82
|
ifcld |
|
84 |
58 82
|
ifcld |
|
85 |
|
eqidd |
|
86 |
|
eqidd |
|
87 |
6 83 84 85 86
|
offval2 |
|
88 |
79 87
|
eqtr4d |
|
89 |
88
|
oveq2d |
|
90 |
43
|
reseq1d |
|
91 |
|
ssun1 |
|
92 |
91 11
|
sseqtrrid |
|
93 |
44
|
mpteq2ia |
|
94 |
|
resmpt |
|
95 |
|
resmpt |
|
96 |
93 94 95
|
3eqtr4a |
|
97 |
92 96
|
syl |
|
98 |
90 97
|
eqtr4d |
|
99 |
98
|
oveq2d |
|
100 |
83
|
fmpttd |
|
101 |
39
|
frnd |
|
102 |
4
|
cntzidss |
|
103 |
28 101 102
|
syl2anc |
|
104 |
|
eldifn |
|
105 |
104
|
adantl |
|
106 |
105
|
iffalsed |
|
107 |
106 6
|
suppss2 |
|
108 |
1 2 4 5 6 100 103 107 14
|
gsumzres |
|
109 |
99 108
|
eqtrd |
|
110 |
43
|
reseq1d |
|
111 |
|
ssun2 |
|
112 |
111 11
|
sseqtrrid |
|
113 |
66
|
mpteq2ia |
|
114 |
|
resmpt |
|
115 |
|
resmpt |
|
116 |
113 114 115
|
3eqtr4a |
|
117 |
112 116
|
syl |
|
118 |
110 117
|
eqtr4d |
|
119 |
118
|
oveq2d |
|
120 |
84
|
fmpttd |
|
121 |
41
|
frnd |
|
122 |
4
|
cntzidss |
|
123 |
28 121 122
|
syl2anc |
|
124 |
|
eldifn |
|
125 |
124
|
adantl |
|
126 |
125
|
iffalsed |
|
127 |
126 6
|
suppss2 |
|
128 |
1 2 4 5 6 120 123 127 15
|
gsumzres |
|
129 |
119 128
|
eqtrd |
|
130 |
109 129
|
oveq12d |
|
131 |
42 89 130
|
3eqtr4d |
|