Metamath Proof Explorer


Theorem gsumzsubmcl

Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumzsubmcl.0 0 ˙ = 0 G
gsumzsubmcl.z Z = Cntz G
gsumzsubmcl.g φ G Mnd
gsumzsubmcl.a φ A V
gsumzsubmcl.s φ S SubMnd G
gsumzsubmcl.f φ F : A S
gsumzsubmcl.c φ ran F Z ran F
gsumzsubmcl.w φ finSupp 0 ˙ F
Assertion gsumzsubmcl φ G F S

Proof

Step Hyp Ref Expression
1 gsumzsubmcl.0 0 ˙ = 0 G
2 gsumzsubmcl.z Z = Cntz G
3 gsumzsubmcl.g φ G Mnd
4 gsumzsubmcl.a φ A V
5 gsumzsubmcl.s φ S SubMnd G
6 gsumzsubmcl.f φ F : A S
7 gsumzsubmcl.c φ ran F Z ran F
8 gsumzsubmcl.w φ finSupp 0 ˙ F
9 eqid Base G 𝑠 S = Base G 𝑠 S
10 eqid 0 G 𝑠 S = 0 G 𝑠 S
11 eqid Cntz G 𝑠 S = Cntz G 𝑠 S
12 eqid G 𝑠 S = G 𝑠 S
13 12 submmnd S SubMnd G G 𝑠 S Mnd
14 5 13 syl φ G 𝑠 S Mnd
15 12 submbas S SubMnd G S = Base G 𝑠 S
16 5 15 syl φ S = Base G 𝑠 S
17 16 feq3d φ F : A S F : A Base G 𝑠 S
18 6 17 mpbid φ F : A Base G 𝑠 S
19 6 frnd φ ran F S
20 7 19 ssind φ ran F Z ran F S
21 12 2 11 resscntz S SubMnd G ran F S Cntz G 𝑠 S ran F = Z ran F S
22 5 19 21 syl2anc φ Cntz G 𝑠 S ran F = Z ran F S
23 20 22 sseqtrrd φ ran F Cntz G 𝑠 S ran F
24 12 1 subm0 S SubMnd G 0 ˙ = 0 G 𝑠 S
25 5 24 syl φ 0 ˙ = 0 G 𝑠 S
26 8 25 breqtrd φ finSupp 0 G 𝑠 S F
27 9 10 11 14 4 18 23 26 gsumzcl φ G 𝑠 S F Base G 𝑠 S
28 4 5 6 12 gsumsubm φ G F = G 𝑠 S F
29 27 28 16 3eltr4d φ G F S