| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzsubmcl.0 |
|
| 2 |
|
gsumzsubmcl.z |
|
| 3 |
|
gsumzsubmcl.g |
|
| 4 |
|
gsumzsubmcl.a |
|
| 5 |
|
gsumzsubmcl.s |
|
| 6 |
|
gsumzsubmcl.f |
|
| 7 |
|
gsumzsubmcl.c |
|
| 8 |
|
gsumzsubmcl.w |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
12
|
submmnd |
|
| 14 |
5 13
|
syl |
|
| 15 |
12
|
submbas |
|
| 16 |
5 15
|
syl |
|
| 17 |
16
|
feq3d |
|
| 18 |
6 17
|
mpbid |
|
| 19 |
6
|
frnd |
|
| 20 |
7 19
|
ssind |
|
| 21 |
12 2 11
|
resscntz |
|
| 22 |
5 19 21
|
syl2anc |
|
| 23 |
20 22
|
sseqtrrd |
|
| 24 |
12 1
|
subm0 |
|
| 25 |
5 24
|
syl |
|
| 26 |
8 25
|
breqtrd |
|
| 27 |
9 10 11 14 4 18 23 26
|
gsumzcl |
|
| 28 |
4 5 6 12
|
gsumsubm |
|
| 29 |
27 28 16
|
3eltr4d |
|