Metamath Proof Explorer


Theorem gsumzunsnd

Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses gsumzunsnd.b B = Base G
gsumzunsnd.p + ˙ = + G
gsumzunsnd.z Z = Cntz G
gsumzunsnd.f F = k A M X
gsumzunsnd.g φ G Mnd
gsumzunsnd.a φ A Fin
gsumzunsnd.c φ ran F Z ran F
gsumzunsnd.x φ k A X B
gsumzunsnd.m φ M V
gsumzunsnd.d φ ¬ M A
gsumzunsnd.y φ Y B
gsumzunsnd.s φ k = M X = Y
Assertion gsumzunsnd φ G F = G k A X + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumzunsnd.b B = Base G
2 gsumzunsnd.p + ˙ = + G
3 gsumzunsnd.z Z = Cntz G
4 gsumzunsnd.f F = k A M X
5 gsumzunsnd.g φ G Mnd
6 gsumzunsnd.a φ A Fin
7 gsumzunsnd.c φ ran F Z ran F
8 gsumzunsnd.x φ k A X B
9 gsumzunsnd.m φ M V
10 gsumzunsnd.d φ ¬ M A
11 gsumzunsnd.y φ Y B
12 gsumzunsnd.s φ k = M X = Y
13 eqid 0 G = 0 G
14 snfi M Fin
15 unfi A Fin M Fin A M Fin
16 6 14 15 sylancl φ A M Fin
17 elun k A M k A k M
18 elsni k M k = M
19 18 12 sylan2 φ k M X = Y
20 11 adantr φ k M Y B
21 19 20 eqeltrd φ k M X B
22 8 21 jaodan φ k A k M X B
23 17 22 sylan2b φ k A M X B
24 23 4 fmptd φ F : A M B
25 8 expcom k A φ X B
26 11 adantr φ k = M Y B
27 12 26 eqeltrd φ k = M X B
28 27 expcom k = M φ X B
29 18 28 syl k M φ X B
30 25 29 jaoi k A k M φ X B
31 17 30 sylbi k A M φ X B
32 31 impcom φ k A M X B
33 fvexd φ 0 G V
34 4 16 32 33 fsuppmptdm φ finSupp 0 G F
35 disjsn A M = ¬ M A
36 10 35 sylibr φ A M =
37 eqidd φ A M = A M
38 1 13 2 3 5 16 24 7 34 36 37 gsumzsplit φ G F = G F A + ˙ G F M
39 4 reseq1i F A = k A M X A
40 ssun1 A A M
41 resmpt A A M k A M X A = k A X
42 40 41 mp1i φ k A M X A = k A X
43 39 42 eqtrid φ F A = k A X
44 43 oveq2d φ G F A = G k A X
45 4 reseq1i F M = k A M X M
46 ssun2 M A M
47 resmpt M A M k A M X M = k M X
48 46 47 mp1i φ k A M X M = k M X
49 45 48 eqtrid φ F M = k M X
50 49 oveq2d φ G F M = G k M X
51 44 50 oveq12d φ G F A + ˙ G F M = G k A X + ˙ G k M X
52 1 5 9 11 12 gsumsnd φ G k M X = Y
53 52 oveq2d φ G k A X + ˙ G k M X = G k A X + ˙ Y
54 38 51 53 3eqtrd φ G F = G k A X + ˙ Y