Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzunsnd.b |
|
2 |
|
gsumzunsnd.p |
|
3 |
|
gsumzunsnd.z |
|
4 |
|
gsumzunsnd.f |
|
5 |
|
gsumzunsnd.g |
|
6 |
|
gsumzunsnd.a |
|
7 |
|
gsumzunsnd.c |
|
8 |
|
gsumzunsnd.x |
|
9 |
|
gsumzunsnd.m |
|
10 |
|
gsumzunsnd.d |
|
11 |
|
gsumzunsnd.y |
|
12 |
|
gsumzunsnd.s |
|
13 |
|
eqid |
|
14 |
|
snfi |
|
15 |
|
unfi |
|
16 |
6 14 15
|
sylancl |
|
17 |
|
elun |
|
18 |
|
elsni |
|
19 |
18 12
|
sylan2 |
|
20 |
11
|
adantr |
|
21 |
19 20
|
eqeltrd |
|
22 |
8 21
|
jaodan |
|
23 |
17 22
|
sylan2b |
|
24 |
23 4
|
fmptd |
|
25 |
8
|
expcom |
|
26 |
11
|
adantr |
|
27 |
12 26
|
eqeltrd |
|
28 |
27
|
expcom |
|
29 |
18 28
|
syl |
|
30 |
25 29
|
jaoi |
|
31 |
17 30
|
sylbi |
|
32 |
31
|
impcom |
|
33 |
|
fvexd |
|
34 |
4 16 32 33
|
fsuppmptdm |
|
35 |
|
disjsn |
|
36 |
10 35
|
sylibr |
|
37 |
|
eqidd |
|
38 |
1 13 2 3 5 16 24 7 34 36 37
|
gsumzsplit |
|
39 |
4
|
reseq1i |
|
40 |
|
ssun1 |
|
41 |
|
resmpt |
|
42 |
40 41
|
mp1i |
|
43 |
39 42
|
eqtrid |
|
44 |
43
|
oveq2d |
|
45 |
4
|
reseq1i |
|
46 |
|
ssun2 |
|
47 |
|
resmpt |
|
48 |
46 47
|
mp1i |
|
49 |
45 48
|
eqtrid |
|
50 |
49
|
oveq2d |
|
51 |
44 50
|
oveq12d |
|
52 |
1 5 9 11 12
|
gsumsnd |
|
53 |
52
|
oveq2d |
|
54 |
38 51 53
|
3eqtrd |
|