Metamath Proof Explorer


Theorem gt0div

Description: Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005)

Ref Expression
Assertion gt0div A B 0 < B 0 < A 0 < A B

Proof

Step Hyp Ref Expression
1 0re 0
2 ltdiv1 0 A B 0 < B 0 < A 0 B < A B
3 1 2 mp3an1 A B 0 < B 0 < A 0 B < A B
4 3 3impb A B 0 < B 0 < A 0 B < A B
5 recn B B
6 gt0ne0 B 0 < B B 0
7 div0 B B 0 0 B = 0
8 5 6 7 syl2an2r B 0 < B 0 B = 0
9 8 breq1d B 0 < B 0 B < A B 0 < A B
10 9 3adant1 A B 0 < B 0 B < A B 0 < A B
11 4 10 bitrd A B 0 < B 0 < A 0 < A B