Metamath Proof Explorer


Theorem gt0divd

Description: Division of a positive number by a positive number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion gt0divd φ 0 < A 0 < A B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 2 rpred φ B
4 2 rpgt0d φ 0 < B
5 gt0div A B 0 < B 0 < A 0 < A B
6 1 3 4 5 syl3anc φ 0 < A 0 < A B