Metamath Proof Explorer


Theorem gt0ne0d

Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis gt0ne0d.1 φ 0 < A
Assertion gt0ne0d φ A 0

Proof

Step Hyp Ref Expression
1 gt0ne0d.1 φ 0 < A
2 0re 0
3 ltne 0 0 < A A 0
4 2 1 3 sylancr φ A 0