Metamath Proof Explorer


Theorem gt0srpr

Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion gt0srpr 0 𝑹 < 𝑹 A B ~ 𝑹 B < 𝑷 A

Proof

Step Hyp Ref Expression
1 ltsrpr 1 𝑷 1 𝑷 ~ 𝑹 < 𝑹 A B ~ 𝑹 1 𝑷 + 𝑷 B < 𝑷 1 𝑷 + 𝑷 A
2 df-0r 0 𝑹 = 1 𝑷 1 𝑷 ~ 𝑹
3 2 breq1i 0 𝑹 < 𝑹 A B ~ 𝑹 1 𝑷 1 𝑷 ~ 𝑹 < 𝑹 A B ~ 𝑹
4 1pr 1 𝑷 𝑷
5 ltapr 1 𝑷 𝑷 B < 𝑷 A 1 𝑷 + 𝑷 B < 𝑷 1 𝑷 + 𝑷 A
6 4 5 ax-mp B < 𝑷 A 1 𝑷 + 𝑷 B < 𝑷 1 𝑷 + 𝑷 A
7 1 3 6 3bitr4i 0 𝑹 < 𝑹 A B ~ 𝑹 B < 𝑷 A