Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
gtned
Next ⟩
ltned
Metamath Proof Explorer
Ascii
Unicode
Theorem
gtned
Description:
'Less than' implies not equal.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
ltd.1
⊢
φ
→
A
∈
ℝ
ltned.2
⊢
φ
→
A
<
B
Assertion
gtned
⊢
φ
→
B
≠
A
Proof
Step
Hyp
Ref
Expression
1
ltd.1
⊢
φ
→
A
∈
ℝ
2
ltned.2
⊢
φ
→
A
<
B
3
ltne
⊢
A
∈
ℝ
∧
A
<
B
→
B
≠
A
4
1
2
3
syl2anc
⊢
φ
→
B
≠
A