Metamath Proof Explorer


Theorem gtned

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltned.2 φ A < B
Assertion gtned φ B A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltned.2 φ A < B
3 ltne A A < B B A
4 1 2 3 syl2anc φ B A