Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
gtneii
Next ⟩
ltneii
Metamath Proof Explorer
Ascii
Unicode
Theorem
gtneii
Description:
'Less than' implies not equal.
(Contributed by
Mario Carneiro
, 30-Sep-2013)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
ltneii.2
⊢
A
<
B
Assertion
gtneii
⊢
B
≠
A
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
ltneii.2
⊢
A
<
B
3
ltne
⊢
A
∈
ℝ
∧
A
<
B
→
B
≠
A
4
1
2
3
mp2an
⊢
B
≠
A