Metamath Proof Explorer


Theorem gtneii

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013)

Ref Expression
Hypotheses lt.1 A
ltneii.2 A < B
Assertion gtneii B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 ltneii.2 A < B
3 ltne A A < B B A
4 1 2 3 mp2an B A