Metamath Proof Explorer


Theorem gtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelicc.a φ A *
gtnelicc.b φ B
gtnelicc.c φ C *
gtnelicc.bltc φ B < C
Assertion gtnelicc φ ¬ C A B

Proof

Step Hyp Ref Expression
1 gtnelicc.a φ A *
2 gtnelicc.b φ B
3 gtnelicc.c φ C *
4 gtnelicc.bltc φ B < C
5 2 rexrd φ B *
6 xrltnle B * C * B < C ¬ C B
7 5 3 6 syl2anc φ B < C ¬ C B
8 4 7 mpbid φ ¬ C B
9 8 intnand φ ¬ A C C B
10 elicc4 A * B * C * C A B A C C B
11 1 5 3 10 syl3anc φ C A B A C C B
12 9 11 mtbird φ ¬ C A B