Metamath Proof Explorer


Theorem gzaddcl

Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion gzaddcl A i B i A + B i

Proof

Step Hyp Ref Expression
1 gzcn A i A
2 gzcn B i B
3 addcl A B A + B
4 1 2 3 syl2an A i B i A + B
5 readd A B A + B = A + B
6 1 2 5 syl2an A i B i A + B = A + B
7 elgz A i A A A
8 7 simp2bi A i A
9 elgz B i B B B
10 9 simp2bi B i B
11 zaddcl A B A + B
12 8 10 11 syl2an A i B i A + B
13 6 12 eqeltrd A i B i A + B
14 imadd A B A + B = A + B
15 1 2 14 syl2an A i B i A + B = A + B
16 7 simp3bi A i A
17 9 simp3bi B i B
18 zaddcl A B A + B
19 16 17 18 syl2an A i B i A + B
20 15 19 eqeltrd A i B i A + B
21 elgz A + B i A + B A + B A + B
22 4 13 20 21 syl3anbrc A i B i A + B i