Metamath Proof Explorer


Theorem gzmulcl

Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion gzmulcl A i B i A B i

Proof

Step Hyp Ref Expression
1 gzcn A i A
2 gzcn B i B
3 mulcl A B A B
4 1 2 3 syl2an A i B i A B
5 remul A B A B = A B A B
6 1 2 5 syl2an A i B i A B = A B A B
7 elgz A i A A A
8 7 simp2bi A i A
9 elgz B i B B B
10 9 simp2bi B i B
11 zmulcl A B A B
12 8 10 11 syl2an A i B i A B
13 7 simp3bi A i A
14 9 simp3bi B i B
15 zmulcl A B A B
16 13 14 15 syl2an A i B i A B
17 12 16 zsubcld A i B i A B A B
18 6 17 eqeltrd A i B i A B
19 immul A B A B = A B + A B
20 1 2 19 syl2an A i B i A B = A B + A B
21 zmulcl A B A B
22 8 14 21 syl2an A i B i A B
23 zmulcl A B A B
24 13 10 23 syl2an A i B i A B
25 22 24 zaddcld A i B i A B + A B
26 20 25 eqeltrd A i B i A B
27 elgz A B i A B A B A B
28 4 18 26 27 syl3anbrc A i B i A B i