Metamath Proof Explorer


Theorem gzreim

Description: Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014)

Ref Expression
Assertion gzreim A B A + i B i

Proof

Step Hyp Ref Expression
1 zgz A A i
2 igz i i
3 zgz B B i
4 gzmulcl i i B i i B i
5 2 3 4 sylancr B i B i
6 gzaddcl A i i B i A + i B i
7 1 5 6 syl2an A B A + i B i