Step |
Hyp |
Ref |
Expression |
1 |
|
gzrng.1 |
|
2 |
|
gzsubrg |
|
3 |
1
|
subrgbas |
|
4 |
2 3
|
ax-mp |
|
5 |
|
eqid |
|
6 |
4 5
|
unitcl |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 7 5 8
|
subrginv |
|
10 |
2 9
|
mpan |
|
11 |
|
gzcn |
|
12 |
6 11
|
syl |
|
13 |
|
0red |
|
14 |
|
1re |
|
15 |
14
|
a1i |
|
16 |
12
|
abscld |
|
17 |
|
0lt1 |
|
18 |
17
|
a1i |
|
19 |
1
|
gzrngunitlem |
|
20 |
13 15 16 18 19
|
ltletrd |
|
21 |
20
|
gt0ne0d |
|
22 |
12
|
abs00ad |
|
23 |
22
|
necon3bid |
|
24 |
21 23
|
mpbid |
|
25 |
|
cnfldinv |
|
26 |
12 24 25
|
syl2anc |
|
27 |
10 26
|
eqtr3d |
|
28 |
1
|
subrgring |
|
29 |
2 28
|
ax-mp |
|
30 |
5 8
|
unitinvcl |
|
31 |
29 30
|
mpan |
|
32 |
27 31
|
eqeltrrd |
|
33 |
1
|
gzrngunitlem |
|
34 |
32 33
|
syl |
|
35 |
|
1cnd |
|
36 |
35 12 24
|
absdivd |
|
37 |
34 36
|
breqtrd |
|
38 |
|
1div1e1 |
|
39 |
|
abs1 |
|
40 |
39
|
eqcomi |
|
41 |
40
|
oveq1i |
|
42 |
37 38 41
|
3brtr4g |
|
43 |
|
lerec |
|
44 |
16 20 15 18 43
|
syl22anc |
|
45 |
42 44
|
mpbird |
|
46 |
|
letri3 |
|
47 |
16 14 46
|
sylancl |
|
48 |
45 19 47
|
mpbir2and |
|
49 |
6 48
|
jca |
|
50 |
11
|
adantr |
|
51 |
|
simpr |
|
52 |
|
ax-1ne0 |
|
53 |
52
|
a1i |
|
54 |
51 53
|
eqnetrd |
|
55 |
|
fveq2 |
|
56 |
|
abs0 |
|
57 |
55 56
|
eqtrdi |
|
58 |
57
|
necon3i |
|
59 |
54 58
|
syl |
|
60 |
|
eldifsn |
|
61 |
50 59 60
|
sylanbrc |
|
62 |
|
simpl |
|
63 |
50 59 25
|
syl2anc |
|
64 |
50
|
absvalsqd |
|
65 |
51
|
oveq1d |
|
66 |
|
sq1 |
|
67 |
65 66
|
eqtrdi |
|
68 |
64 67
|
eqtr3d |
|
69 |
68
|
oveq1d |
|
70 |
50
|
cjcld |
|
71 |
70 50 59
|
divcan3d |
|
72 |
63 69 71
|
3eqtr2d |
|
73 |
|
gzcjcl |
|
74 |
73
|
adantr |
|
75 |
72 74
|
eqeltrd |
|
76 |
|
cnfldbas |
|
77 |
|
cnfld0 |
|
78 |
|
cndrng |
|
79 |
76 77 78
|
drngui |
|
80 |
1 79 5 7
|
subrgunit |
|
81 |
2 80
|
ax-mp |
|
82 |
61 62 75 81
|
syl3anbrc |
|
83 |
49 82
|
impbii |
|