Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
|
2 |
|
h1de2.2 |
|
3 |
|
his6 |
|
4 |
2 3
|
ax-mp |
|
5 |
4
|
necon3bii |
|
6 |
1 2
|
h1de2i |
|
7 |
6
|
adantl |
|
8 |
7
|
oveq2d |
|
9 |
2 2
|
hicli |
|
10 |
9
|
recclzi |
|
11 |
|
ax-hvmulass |
|
12 |
9 1 11
|
mp3an23 |
|
13 |
10 12
|
syl |
|
14 |
|
ax-1cn |
|
15 |
14 9
|
divcan1zi |
|
16 |
15
|
oveq1d |
|
17 |
13 16
|
eqtr3d |
|
18 |
|
ax-hvmulid |
|
19 |
1 18
|
ax-mp |
|
20 |
17 19
|
eqtrdi |
|
21 |
20
|
adantr |
|
22 |
8 21
|
eqtr3d |
|
23 |
1 2
|
hicli |
|
24 |
|
ax-hvmulass |
|
25 |
23 2 24
|
mp3an23 |
|
26 |
10 25
|
syl |
|
27 |
|
mulcom |
|
28 |
10 23 27
|
sylancl |
|
29 |
23 9
|
divreczi |
|
30 |
28 29
|
eqtr4d |
|
31 |
30
|
oveq1d |
|
32 |
26 31
|
eqtr3d |
|
33 |
32
|
adantr |
|
34 |
22 33
|
eqtr3d |
|
35 |
34
|
ex |
|
36 |
23 9
|
divclzi |
|
37 |
2
|
elexi |
|
38 |
37
|
snss |
|
39 |
2 38
|
mpbi |
|
40 |
|
occl |
|
41 |
39 40
|
ax-mp |
|
42 |
41
|
choccli |
|
43 |
42
|
chshii |
|
44 |
|
h1did |
|
45 |
2 44
|
ax-mp |
|
46 |
|
shmulcl |
|
47 |
43 45 46
|
mp3an13 |
|
48 |
36 47
|
syl |
|
49 |
|
eleq1 |
|
50 |
48 49
|
syl5ibrcom |
|
51 |
35 50
|
impbid |
|
52 |
5 51
|
sylbir |
|