Metamath Proof Explorer


Theorem h2hmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U = + norm
h2h.2 U NrmCVec
h2hm.4 = BaseSet U
h2hm.5 D = IndMet U
Assertion h2hmetdval A B A D B = norm A - B

Proof

Step Hyp Ref Expression
1 h2h.1 U = + norm
2 h2h.2 U NrmCVec
3 h2hm.4 = BaseSet U
4 h2hm.5 D = IndMet U
5 1 2 3 h2hvs - = - v U
6 1 2 h2hnm norm = norm CV U
7 3 5 6 4 imsdval U NrmCVec A B A D B = norm A - B
8 2 7 mp3an1 A B A D B = norm A - B