Metamath Proof Explorer


Theorem h2hsm

Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U = + norm
h2h.2 U NrmCVec
Assertion h2hsm = 𝑠OLD U

Proof

Step Hyp Ref Expression
1 h2h.1 U = + norm
2 h2h.2 U NrmCVec
3 eqid 𝑠OLD + norm = 𝑠OLD + norm
4 3 smfval 𝑠OLD + norm = 2 nd 1 st + norm
5 opex + V
6 1 2 eqeltrri + norm NrmCVec
7 nvex + norm NrmCVec + V V norm V
8 6 7 ax-mp + V V norm V
9 8 simp3i norm V
10 5 9 op1st 1 st + norm = +
11 10 fveq2i 2 nd 1 st + norm = 2 nd +
12 8 simp1i + V
13 8 simp2i V
14 12 13 op2nd 2 nd + =
15 4 11 14 3eqtrri = 𝑠OLD + norm
16 1 fveq2i 𝑠OLD U = 𝑠OLD + norm
17 15 16 eqtr4i = 𝑠OLD U