Metamath Proof Explorer


Theorem h2hva

Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U = + norm
h2h.2 U NrmCVec
Assertion h2hva + = + v U

Proof

Step Hyp Ref Expression
1 h2h.1 U = + norm
2 h2h.2 U NrmCVec
3 eqid + v + norm = + v + norm
4 3 vafval + v + norm = 1 st 1 st + norm
5 opex + V
6 1 2 eqeltrri + norm NrmCVec
7 nvex + norm NrmCVec + V V norm V
8 6 7 ax-mp + V V norm V
9 8 simp3i norm V
10 5 9 op1st 1 st + norm = +
11 10 fveq2i 1 st 1 st + norm = 1 st +
12 8 simp1i + V
13 8 simp2i V
14 12 13 op1st 1 st + = +
15 4 11 14 3eqtrri + = + v + norm
16 1 fveq2i + v U = + v + norm
17 15 16 eqtr4i + = + v U