Metamath Proof Explorer


Theorem h2hvs

Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U = + norm
h2h.2 U NrmCVec
h2h.4 = BaseSet U
Assertion h2hvs - = - v U

Proof

Step Hyp Ref Expression
1 h2h.1 U = + norm
2 h2h.2 U NrmCVec
3 h2h.4 = BaseSet U
4 df-hvsub - = x , y x + -1 y
5 1 2 h2hva + = + v U
6 1 2 h2hsm = 𝑠OLD U
7 eqid - v U = - v U
8 3 5 6 7 nvmfval U NrmCVec - v U = x , y x + -1 y
9 2 8 ax-mp - v U = x , y x + -1 y
10 4 9 eqtr4i - = - v U