Metamath Proof Explorer


Theorem hadbi

Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion hadbi hadd φ ψ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 df-xor φ ψ χ ¬ φ ψ χ
2 df-had hadd φ ψ χ φ ψ χ
3 xnor φ ψ ¬ φ ψ
4 3 bibi1i φ ψ χ ¬ φ ψ χ
5 nbbn ¬ φ ψ χ ¬ φ ψ χ
6 4 5 bitri φ ψ χ ¬ φ ψ χ
7 1 2 6 3bitr4i hadd φ ψ χ φ ψ χ