Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
half0
Next ⟩
2halves
Metamath Proof Explorer
Ascii
Unicode
Theorem
half0
Description:
Half of a number is zero iff the number is zero.
(Contributed by
NM
, 20-Apr-2006)
Ref
Expression
Assertion
half0
⊢
A
∈
ℂ
→
A
2
=
0
↔
A
=
0
Proof
Step
Hyp
Ref
Expression
1
2cn
⊢
2
∈
ℂ
2
2ne0
⊢
2
≠
0
3
diveq0
⊢
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
A
2
=
0
↔
A
=
0
4
1
2
3
mp3an23
⊢
A
∈
ℂ
→
A
2
=
0
↔
A
=
0