Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
halfaddsubcl
Next ⟩
halfaddsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
halfaddsubcl
Description:
Closure of half-sum and half-difference.
(Contributed by
Paul Chapman
, 12-Oct-2007)
Ref
Expression
Assertion
halfaddsubcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
∈
ℂ
∧
A
−
B
2
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
addcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
∈
ℂ
2
halfcl
⊢
A
+
B
∈
ℂ
→
A
+
B
2
∈
ℂ
3
1
2
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
∈
ℂ
4
subcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
∈
ℂ
5
halfcl
⊢
A
−
B
∈
ℂ
→
A
−
B
2
∈
ℂ
6
4
5
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
2
∈
ℂ
7
3
6
jca
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
∈
ℂ
∧
A
−
B
2
∈
ℂ