Metamath Proof Explorer


Theorem halfaddsubcl

Description: Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion halfaddsubcl A B A + B 2 A B 2

Proof

Step Hyp Ref Expression
1 addcl A B A + B
2 halfcl A + B A + B 2
3 1 2 syl A B A + B 2
4 subcl A B A B
5 halfcl A B A B 2
6 4 5 syl A B A B 2
7 3 6 jca A B A + B 2 A B 2