Metamath Proof Explorer


Theorem halffl

Description: Floor of ( 1 / 2 ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion halffl 1 2 = 0

Proof

Step Hyp Ref Expression
1 0re 0
2 halfre 1 2
3 halfgt0 0 < 1 2
4 1 2 3 ltleii 0 1 2
5 halflt1 1 2 < 1
6 1e0p1 1 = 0 + 1
7 5 6 breqtri 1 2 < 0 + 1
8 0z 0
9 flbi 1 2 0 1 2 = 0 0 1 2 1 2 < 0 + 1
10 2 8 9 mp2an 1 2 = 0 0 1 2 1 2 < 0 + 1
11 4 7 10 mpbir2an 1 2 = 0