Metamath Proof Explorer


Theorem halfleoddlt

Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion halfleoddlt N ¬ 2 N M N 2 M N 2 < M

Proof

Step Hyp Ref Expression
1 odd2np1 N ¬ 2 N n 2 n + 1 = N
2 0xr 0 *
3 1xr 1 *
4 halfre 1 2
5 4 rexri 1 2 *
6 2 3 5 3pm3.2i 0 * 1 * 1 2 *
7 halfgt0 0 < 1 2
8 halflt1 1 2 < 1
9 7 8 pm3.2i 0 < 1 2 1 2 < 1
10 elioo3g 1 2 0 1 0 * 1 * 1 2 * 0 < 1 2 1 2 < 1
11 6 9 10 mpbir2an 1 2 0 1
12 zltaddlt1le n M 1 2 0 1 n + 1 2 < M n + 1 2 M
13 11 12 mp3an3 n M n + 1 2 < M n + 1 2 M
14 zcn n n
15 14 adantr n M n
16 1cnd n M 1
17 2cnne0 2 2 0
18 17 a1i n M 2 2 0
19 muldivdir n 1 2 2 0 2 n + 1 2 = n + 1 2
20 15 16 18 19 syl3anc n M 2 n + 1 2 = n + 1 2
21 20 breq1d n M 2 n + 1 2 < M n + 1 2 < M
22 20 breq1d n M 2 n + 1 2 M n + 1 2 M
23 13 21 22 3bitr4rd n M 2 n + 1 2 M 2 n + 1 2 < M
24 oveq1 2 n + 1 = N 2 n + 1 2 = N 2
25 24 breq1d 2 n + 1 = N 2 n + 1 2 M N 2 M
26 24 breq1d 2 n + 1 = N 2 n + 1 2 < M N 2 < M
27 25 26 bibi12d 2 n + 1 = N 2 n + 1 2 M 2 n + 1 2 < M N 2 M N 2 < M
28 23 27 syl5ibcom n M 2 n + 1 = N N 2 M N 2 < M
29 28 ex n M 2 n + 1 = N N 2 M N 2 < M
30 29 adantl N n M 2 n + 1 = N N 2 M N 2 < M
31 30 com23 N n 2 n + 1 = N M N 2 M N 2 < M
32 31 rexlimdva N n 2 n + 1 = N M N 2 M N 2 < M
33 1 32 sylbid N ¬ 2 N M N 2 M N 2 < M
34 33 3imp N ¬ 2 N M N 2 M N 2 < M