Metamath Proof Explorer


Theorem halfnq

Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 16-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion halfnq A 𝑸 x x + 𝑸 x = A

Proof

Step Hyp Ref Expression
1 distrnq A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
2 distrnq 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
3 1nq 1 𝑸 𝑸
4 addclnq 1 𝑸 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸
5 3 3 4 mp2an 1 𝑸 + 𝑸 1 𝑸 𝑸
6 recidnq 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸
7 5 6 ax-mp 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸
8 7 7 oveq12i 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸
9 2 8 eqtri 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸
10 9 oveq1i 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
11 7 oveq2i * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸
12 mulassnq * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
13 mulcomnq * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
14 13 oveq1i * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
15 12 14 eqtr3i * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
16 recclnq 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸
17 addclnq * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸
18 16 16 17 syl2anc 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸
19 mulidnq * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 = * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
20 5 18 19 mp2b * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 1 𝑸 = * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
21 11 15 20 3eqtr3i 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
22 10 21 7 3eqtr3i * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = 1 𝑸
23 22 oveq2i A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A 𝑸 1 𝑸
24 1 23 eqtr3i A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A 𝑸 1 𝑸
25 mulidnq A 𝑸 A 𝑸 1 𝑸 = A
26 24 25 eqtrid A 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A
27 ovex A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 V
28 oveq12 x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 x + 𝑸 x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
29 28 anidms x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 x + 𝑸 x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸
30 29 eqeq1d x = A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 x + 𝑸 x = A A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A
31 27 30 spcev A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 + 𝑸 A 𝑸 * 𝑸 1 𝑸 + 𝑸 1 𝑸 = A x x + 𝑸 x = A
32 26 31 syl A 𝑸 x x + 𝑸 x = A