Metamath Proof Explorer


Theorem halfpm6th

Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008)

Ref Expression
Assertion halfpm6th 1 2 1 6 = 1 3 1 2 + 1 6 = 2 3

Proof

Step Hyp Ref Expression
1 3cn 3
2 ax-1cn 1
3 2cn 2
4 3ne0 3 0
5 2ne0 2 0
6 1 1 2 3 4 5 divmuldivi 3 3 1 2 = 3 1 3 2
7 1 4 dividi 3 3 = 1
8 7 oveq1i 3 3 1 2 = 1 1 2
9 halfcn 1 2
10 9 mulid2i 1 1 2 = 1 2
11 8 10 eqtri 3 3 1 2 = 1 2
12 1 mulid1i 3 1 = 3
13 3t2e6 3 2 = 6
14 12 13 oveq12i 3 1 3 2 = 3 6
15 6 11 14 3eqtr3i 1 2 = 3 6
16 15 oveq1i 1 2 1 6 = 3 6 1 6
17 6cn 6
18 6re 6
19 6pos 0 < 6
20 18 19 gt0ne0ii 6 0
21 17 20 pm3.2i 6 6 0
22 divsubdir 3 1 6 6 0 3 1 6 = 3 6 1 6
23 1 2 21 22 mp3an 3 1 6 = 3 6 1 6
24 3m1e2 3 1 = 2
25 24 oveq1i 3 1 6 = 2 6
26 3 mulid2i 1 2 = 2
27 26 13 oveq12i 1 2 3 2 = 2 6
28 3 5 dividi 2 2 = 1
29 28 oveq2i 1 3 2 2 = 1 3 1
30 2 1 3 3 4 5 divmuldivi 1 3 2 2 = 1 2 3 2
31 1 4 reccli 1 3
32 31 mulid1i 1 3 1 = 1 3
33 29 30 32 3eqtr3i 1 2 3 2 = 1 3
34 25 27 33 3eqtr2i 3 1 6 = 1 3
35 16 23 34 3eqtr2i 1 2 1 6 = 1 3
36 1 2 17 20 divdiri 3 + 1 6 = 3 6 + 1 6
37 df-4 4 = 3 + 1
38 37 oveq1i 4 6 = 3 + 1 6
39 15 oveq1i 1 2 + 1 6 = 3 6 + 1 6
40 36 38 39 3eqtr4ri 1 2 + 1 6 = 4 6
41 2t2e4 2 2 = 4
42 41 13 oveq12i 2 2 3 2 = 4 6
43 28 oveq2i 2 3 2 2 = 2 3 1
44 3 1 3 3 4 5 divmuldivi 2 3 2 2 = 2 2 3 2
45 3 1 4 divcli 2 3
46 45 mulid1i 2 3 1 = 2 3
47 43 44 46 3eqtr3i 2 2 3 2 = 2 3
48 40 42 47 3eqtr2i 1 2 + 1 6 = 2 3
49 35 48 pm3.2i 1 2 1 6 = 1 3 1 2 + 1 6 = 2 3